
Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Parallel Numerical Algorithms
Chapter 4 – Sparse Linear Systems

Section 4.1 – Direct Methods

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 1 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Outline

1 Sparse Matrices

2 Sparse Triangular Solve

3 Cholesky Factorization

4 Sparse Cholesky Factorization

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 2 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Matrix Definitions
Sparse Matrix Products

Sparse Matrices

Matrix is sparse if most of its entries are zero

For efficiency, store and operate on only nonzero entries,
e.g., ajk · xk need not be done if ajk = 0

But more complicated data structures required incur extra
overhead in storage and arithmetic operations

Matrix is “usefully” sparse if it contains enough zero entries
to be worth taking advantage of them to reduce storage
and work required

In practice, grid discretizations often yield matrices with
Θ(n) nonzero entries, i.e., (small) constant number of
nonzeros per row or column

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Matrix Definitions
Sparse Matrix Products

Graph Model

Adjacency Graph G(A) of symmetric n× n matrix A is
undirected graph having n vertices, with edge between
vertices i and j if aij ̸= 0

Number of edges in G(A) is the number of nonzeros in A

For a grid-based discretization, G(A) is the grid

Adjacency graph provides visual representation of
algorithms and highlights connections between numerical
and combinatorial algorithms

For nonsymmetric A, G(A) would be directed

Often convenient to think of aij as the weight of edge (i, j)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Matrix Definitions
Sparse Matrix Products

Sparse Matrix Representations

Coordinate (COO) (naive) format – store each nonzero
along with its row and column index
Compressed-sparse-row (CSR) format

Store value and column index for each nonzero

Store index of first nonzero for each row

Storage for CSR is less than COO and CSR ordering is
often convenient

CSC (compressed-sparse column), blocked versions (e.g.
CSB), and other storage formats are also used

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 5 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Matrix Definitions
Sparse Matrix Products

Sparse Matrix Distributions

Dense matrix mappings can be adapted to sparse matrices

1-D blocked mapping – store all nonzeros in n/p
consecutive rows on each processor
1-D cyclic or randomized mapping – store all nonzeros in
some subset of n/p rows on each processor
2-D block mapping – store all nonzeros in a n/

√
p× n/

√
p

block of matrix

1-D blocked mappings are best for exploiting locality in
graph, especially when there are Θ(n) nonzeros

Row ordering matters for all mappings, randomization and
cyclicity yield load balance, blocking can yield locality

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 6 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Matrix Definitions
Sparse Matrix Products

Sparse Matrix Vector Multiplication

Sparse matrix vector multiplication (SpMV) is

y = Ax

where A is sparse and x is dense

CSR-based matrix-vector product, for all i (in parallel) do

yi =
∑
j

ai,c(j)xc(j) =

n∑
j=1

aijxj

where c(j) is the index of the jth nonzero in row i

For random 1-D or 2-D mapping, cost of vector
communication is same as in corresponding dense case

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Matrix Definitions
Sparse Matrix Products

SpMV with 1-D Mapping
For 1D blocking (each processor owns n/p rows), number
of elements of x needed by a processor is the number of
columns with a nonzero in the rows it owns
In general, want to order rows to minimize maximum
number of vector elements needed on any processor
Graphically, we want to partition the graph into p subsets of
n/p nodes, to minimize the maximum number of nodes to
which any subset is connected, i.e., for G(A) = (V,E),

V = V1 ∪ · · · ∪ Vp, |Vi| = n/p

is selected to minimize the largest number of external
vertices adjacent to any partition,

max
i

(|{v : v ∈ V \ Vi,∃w ∈ Vi, (v, w) ∈ E}|)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Matrix Definitions
Sparse Matrix Products

Surface Area to Volume Ratio in SpMV

The number of external vertices the maximum partition is
adjacent to depends on the expansion of the graph

Expansion can be interpreted as a measure of the
surface-area to volume ratio of the subgraphs

For example, for a k × k × k grid, a subvolume of
k/p1/3 × k/p1/3 × k/p1/3 has surface area Θ(k2/p2/3)

Communication for this case becomes a neighbor halo
exchange on a 3-D processor mesh

Thus, finding the best 1-D partitioning for SpMV often
corresponds to domain partitioning and depends on the
physical geometry of the problem

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Matrix Definitions
Sparse Matrix Products

Other Sparse Matrix Products

SpMV is of critical importance to many numerical methods,
but suffers from a low flop-to-byte ratio and a potentially
high communication bandwidth cost

In graph algorithms SpMSpV (x and y are sparse) is
prevalent, which is even harder to perform efficiently (e.g.,
to minimize work need layout other than CSR, like CSC)

SpMM (x becomes dense matrix X) provides a higher
flop-to-byte ratio and is much easier to do efficiently

SpGEMM (SpMSpM) (matrix multiplication where all
matrices are sparse) arises in e.g., algebraic multigrid and
graph algorithms, efficiency is highly dependent on sparsity

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sequential Sparse Triangular Solve
Parallel Sparse Triangular Solve

Solving Triangular Sparse Linear Systems

Given sparse lower-triangular matrix L and vector b, solve

Lx = b

all nonzeros of L must be in its lower-triangular part

Sequential algorithm: take xi = bi/lii, update

bj = bj − ljixi for all j ∈ {i+ 1, . . . , n}

If L has m > n nonzeros, require Q1 ≈ 2m operations

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 11 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sequential Sparse Triangular Solve
Parallel Sparse Triangular Solve

Parallelism in Sparse Triangular Solve

We can adapt any dense parallel triangular solve algorithm
to the sparse case

Again have fan-in (left-looking) and fan-out (right-looking)
variants
Communication cost stays the same, computational cost
decreases

In fact there may be additional sources of parallelism, e.g.,
if l21 = 0, we can solve for x1 and x2 concurrently

More generally, can concurrently prune sinks of directed
acyclic adjacency graph (DAG) G(A) = (V,E), where
(i, j) ∈ E if lij ̸= 0

Depth of algorithm corresponds to diameter of this DAG

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sequential Sparse Triangular Solve
Parallel Sparse Triangular Solve

Parallel Algorithm for Sparse Triangular Solve

Partition: associate fine-grain tasks with each (i, j) such
that lij ̸= 0

Communicate: task (i, i) communicates with task (j, i) and
(i, j) for all possible j

Agglomerate: form coarse-grain tasks for each column of
L, i.e., do 1-D agglomeration, combining fine-grain tasks
(⋆, i) into agglomerated task i

Map: assign coarse-grain tasks (columns of L) to
processors with blocking (for locality) and/or cyclicity (for
load balance and concurrency)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 13 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sequential Sparse Triangular Solve
Parallel Sparse Triangular Solve

Analysis of 1-D Parallel Sparse Triangular Solve

Cost of 1-D algorithm will clearly be less than the
corresponding algorithm for the dense case

Load balance depends on distribution of nonzeros, cyclicity
can help distribute dense blocks

Naive algorithm with 1-D column blocking exploits
concurrency only in fan-out updates

Communication bandwidth cost depends on
surface-to-volume ratio of each subset of vertices
associated with a block of columns

Higher concurrency and better performance possible with
dynamic/adaptive algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Cholesky Factorization

Symmetric positive definite matrix A has Cholesky
factorization

A = LLT

where L is lower triangular matrix with positive diagonal
entries

Linear system
Ax = b

can then be solved by forward-substitution in lower
triangular system Ly = b, followed by back-substitution in
upper triangular system LTx = y

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 15 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Computing Cholesky Factorization

Algorithm for computing Cholesky factorization can be
derived by equating corresponding entries of A and LLT

and generating them in correct order

For example, in 2× 2 case[
a11 a21
a21 a22

]
=

[
ℓ11 0
ℓ21 ℓ22

] [
ℓ11 ℓ21
0 ℓ22

]
so we have

ℓ11 =
√
a11, ℓ21 = a21/ℓ11, ℓ22 =

√
a22 − ℓ221

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Cholesky Factorization Algorithm

for k = 1 to n
akk =

√
akk

for i = k + 1 to n
aik = aik/akk

end
for j = k + 1 to n

for i = j to n
aij = aij − aik ajk

end
end

end

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 17 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Cholesky Factorization Algorithm

All n square roots are of positive numbers, so algorithm
well defined

Only lower triangle of A is accessed, so strict upper
triangular portion need not be stored

Factor L computed in place, overwriting lower triangle of A
Pivoting is not required for numerical stability

About n3/6 multiplications and similar number of additions
are required (about half as many as for LU)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 18 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) stores aij and
computes and stores {

ℓij , if i ≥ j
ℓji, if i < j

yielding 2-D array of n2 fine-grain tasks

Zero entries in upper triangle of L need not be computed
or stored, so for convenience in using 2-D mesh network,
ℓij can be redundantly computed as both task (i, j) and
task (j, i) for i > j

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Fine-Grain Tasks and Communication

a11
ℓ11

a21
ℓ21

a21
ℓ21

a22
ℓ22

a31
ℓ31

a41
ℓ41

a32
ℓ32

a42
ℓ42

a31
ℓ31

a32
ℓ32

a41
ℓ41

a42
ℓ42

a33
ℓ33

a43
ℓ43

a43
ℓ43

a44
ℓ44

a51
ℓ51

a52
ℓ52

a61
ℓ61

a62
ℓ62

a53
ℓ53

a54
ℓ54

a63
ℓ63

a64
ℓ64

a51
ℓ51

a61
ℓ61

a52
ℓ52

a62
ℓ62

a53
ℓ53

a63
ℓ63

a54
ℓ54

a64
ℓ64

a55
ℓ55

a65
ℓ65

a65
ℓ65

a66
ℓ66

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Fine-Grain Parallel Algorithm
for k = 1 to min(i, j)− 1

recv broadcast of akj from task (k, j)
recv broadcast of aik from task (i, k)
aij = aij − aik akj

end
if i = j then

aii =
√
aii

broadcast aii to tasks (k, i) and (i, k), k = i+ 1, . . . , n
else if i < j then

recv broadcast of aii from task (i, i)
aij = aij/aii

broadcast aij to tasks (k, j), k = i+ 1, . . . , n
else

recv broadcast of ajj from task (j, j)
aij = aij/ajj

broadcast aij to tasks (i, k), k = j + 1, . . . , n
end

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Agglomeration Schemes

Agglomerate

Agglomeration of fine-grain tasks produces

2-D
1-D column
1-D row

parallel algorithms analogous to those for LU factorization,
with similar performance and scalability

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Loop Orderings for Cholesky
Each choice of i, j, or k index in outer loop yields different
Cholesky algorithm, named for portion of matrix updated by
basic operation in inner loops

Submatrix-Cholesky : (fan-out) with k in outer loop, inner
loops perform rank-1 update of remaining unreduced
submatrix using current column

Column-Cholesky : (fan-in) with j in outer loop, inner loops
compute current column using matrix-vector product that
accumulates effects of previous columns

Row-Cholesky : (fan-in) with i in outer loop, inner loops
compute current row by solving triangular system involving
previous rows

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Memory Access Patterns

read only read and write

Submatrix-Cholesky Column-Cholesky Row-Cholesky

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n
akk =

√
akk

for i = k + 1 to n
aik = aik/akk

end
for j = k + 1 to n

for i = j to n
aij = aij − aik ajk

end
end

end

Column-Cholesky

for j = 1 to n
for k = 1 to j − 1

for i = j to n
aij = aij − aik ajk

end
end
ajj =

√
ajj

for i = j + 1 to n
aij = aij/ajj

end
end

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 25 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Column Operations
Column-oriented algorithms can be stated more compactly by
introducing column operations

cdiv (j): column j is divided by square root of its diagonal
entry

ajj =
√
ajj

for i = j + 1 to n
aij = aij/ajj

end

cmod (j, k): column j is modified by multiple of column k,
with k < j

for i = j to n
aij = aij − aik ajk

end

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n
cdiv (k)
for j = k + 1 to n

cmod (j, k)
end

end

right-looking
immediate-update
data-driven
fan-out

Column-Cholesky

for j = 1 to n
for k = 1 to j − 1

cmod (j, k)
end
cdiv (j)

end

left-looking
delayed-update
demand-driven
fan-in

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Data Dependences

cmod (k + 1, k) cmod (k + 2, k) cmod (n, k)• • •

cdiv (k)

cmod (k, 1) cmod (k, 2) cmod (k, k - 1)• • •

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 28 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm
Parallel Algorithm

Data Dependences

cmod (k, ⋆) operations along bottom can be done in any
order, but they all have same target column, so updating
must be coordinated to preserve data integrity

cmod (⋆, k) operations along top can be done in any order,
and they all have different target columns, so updating can
be done simultaneously

Performing cmods concurrently is most important source
of parallelism in column-oriented factorization algorithms

For dense matrix, each cdiv (k) depends on immediately
preceding column, so cdivs must be done sequentially

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Sparsity Structure

For sparse matrix M , let Mi⋆ denote its ith row and M⋆j

its jth column

Define Struct (Mi⋆) = {k < i | mik ̸= 0}, nonzero structure
of row i of strict lower triangle of M

Define Struct (M⋆j) = {k > j | mkj ̸= 0}, nonzero structure
of column j of strict lower triangle of M

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Sparse Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n
cdiv (k)
for j ∈ Struct (L⋆k)

cmod (j, k)
end

end

right-looking
immediate-update
data-driven
fan-out

Column-Cholesky

for j = 1 to n
for k ∈ Struct (Lj⋆)

cmod (j, k)
end
cdiv (j)

end

left-looking
delayed-update
demand-driven
fan-in

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Graph Model

Recall that adjacency graph G(A) of symmetric n× n
matrix A is undirected graph with edge between vertices i
and j if aij ̸= 0

At each step of Cholesky factorization algorithm,
corresponding vertex is eliminated from graph

Neighbors of eliminated vertex in previous graph become
clique (fully connected subgraph) in modified graph

Entries of A that were initially zero may become nonzero
entries, called fill

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 32 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Graph Model of Elimination

×
×

×
××

××
×

× × ×
× ×××× ×

×
×
×

××
×
× ××
×

× ×
××××

A

×
×

×
××

××
×

×

×
×
× ××
×

× ×
××××

L

+ +
+ ++

3

7

1

6

9

5

4

8

2

3

7

6

9

5

4

8

2

3

7

6

9

5

4

8 7

6

9

5

4

8

7

6

9

5

89 8 7

6

9 87 9 89

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Elimination Tree

parent (j) is row index of first offdiagonal nonzero
in column j of L, if any, and j otherwise

Elimination tree T (A) is graph having n vertices, with edge
between vertices i and j, for i > j, if i = parent (j)

If matrix is irreducible, then elimination tree is single tree
with root at vertex n; otherwise, it is more accurately
termed elimination forest

T (A) is spanning tree for filled graph, F (A), which is G(A)
with all fill edges added

Each column of Cholesky factor L depends only on its
descendants in elimination tree

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 34 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Elimination Tree

×
×

×
××

××
×

× × ×
× ×××× ×

×
×
×

××
×
× ××
×

× ×
××××

A

×
×

×
××

××
×

×

×
×
× ××
×

× ×
××××

L

+ +
+ ++

3

7

1

6

9

5

4

8

2

3

7

1

6

9

5

4

8

2
3

7

1

6

9

5

4

8

2
G (A) F (A) T (A)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 35 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Effect of Matrix Ordering

Amount of fill depends on order in which variables are
eliminated

Example: “arrow” matrix — if first row and column are
dense, then factor fills in completely, but if last row and
column are dense, then they cause no fill

×
×

×
××

××
×

× ×
×××
×
×
×

×

×× × ×××××

×
×

×
× ×

×× ×
××

××
×
×
×
×

×

×××××× × ×

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 36 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Ordering Heuristics

General problem of finding ordering that minimizes fill is
NP-complete, but there are relatively cheap heuristics that limit
fill effectively

Bandwidth or profile reduction : reduce distance of nonzero
diagonals from main diagonal (e.g., RCM)

Minimum degree : eliminate node having fewest neighbors
first

Nested dissection : recursively split graph into pieces using
a vertex separator, numbering separator vertices last

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 37 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Symbolic Factorization

For symmetric positive definite (SPD) matrices, ordering
can be determined in advance of numeric factorization

Only locations of nonzeros matter, not their numerical
values, since pivoting is not required for numerical stability

Once ordering is selected, locations of all fill entries in L
can be anticipated and efficient static data structure set up
to accommodate them prior to numeric factorization

Structure of column j of L is given by union of structures of
lower triangular portion of column j of A and prior columns
of L whose first nonzero below diagonal is in row j

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Solving Sparse SPD Systems

Basic steps in solving sparse SPD systems by Cholesky
factorization

1 Ordering : Symmetrically reorder rows and columns of
matrix so Cholesky factor suffers relatively little fill

2 Symbolic factorization : Determine locations of all fill
entries and allocate data structures in advance to
accommodate them

3 Numeric factorization : Compute numeric values of entries
of Cholesky factor

4 Triangular solve : Compute solution by forward- and
back-substitution

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Parallel Sparse Cholesky

In sparse submatrix- or column-Cholesky, if ajk = 0, then
cmod (j, k) is omitted

Sparse factorization thus has additional source of
parallelism, since “missing” cmods may permit multiple
cdivs to be done simultaneously

Elimination tree shows data dependences among columns
of Cholesky factor L, and hence identifies potential
parallelism

At any point in factorization process, all factor columns
corresponding to leaves in the elimination tree can be
computed simultaneously

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 40 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Parallel Sparse Cholesky

Height of elimination tree determines longest serial path
through computation, and hence parallel execution time

Width of elimination tree determines degree of parallelism
available

Short, wide, well-balanced elimination tree desirable for
parallel factorization

Structure of elimination tree depends on ordering of matrix

So ordering should be chosen both to preserve sparsity
and to enhance parallelism

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 41 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Levels of Parallelism in Sparse Cholesky

Fine-grain
Task is one multiply-add pair
Available in either dense or sparse case
Difficult to exploit effectively in practice

Medium-grain
Task is one cmod or cdiv
Available in either dense or sparse case
Accounts for most of speedup in dense case

Large-grain
Task computes entire set of columns in subtree of
elimination tree
Available only in sparse case

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 42 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Band Ordering, 1-D Grid

×
××

××
×

××
××

×
×

×

××

××
×

×

A

×
××

××
×

×
××

××
×

×

L

4

1

6

3

5

7

2

T (A)

4

1

6

3

5

7

2

G (A)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 43 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Minimum Degree, 1-D Grid

×
××

××
×

× ×
××

×
×
×

××

×
××

×

A

×
××

××
×

×
××

×
××

×

L

7

1

4

5

6

2

3

G (A)

4

6

7

2

T (A)

1

3

5

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 44 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Nested Dissection, 1-D Grid

×
××

××
×

× ×

×

×

×
×
×××

×
××

×

A

×
××

××
×

×
××

×
×

×
×

L

7

1

6

2

5

4

3

G (A)

+ +
4

6

7

2

T (A)

1

3

5

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 45 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Band Ordering, 2-D Grid

×
×

×
××

××
×

×× ×
× ×

×
×× ×

××
×

×

×

×
×

×××
×

×
×

×
×

×

A

×
×

×
××

××
×

×
×
××

××
×

×
×
×

×
×

×

L

+ +
+

+
+

7

4

1

8

5

2

9

6

3

G (A)

+
++

4

1

6

3

5

7

9

8

2

T (A)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 46 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Minimum Degree, 2-D Grid

×
×

×
××

××
×

× × ×
× ×××× ×

×
×
×

××
×
× ××
×

× ×
××××

A

×
×

×
××

××
×

×

×
×
× ××
×

× ×
××××

L

+ +
+ ++

3

7

1

6

9

5

4

8

2

G (A)

3

7

1

6

9

5

4

8

2

T (A)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 47 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Nested Dissection, 2-D Grid

×
×

×
××

××
×

× × ×
× ×

×
×××
×
×
×

×
×

×

×

××
×

×
×

×
××

×
A

×
×

×
××

××
×

×
×

×

×

××
×

× ×
×

×
××
L

+ +
+ ++

4

7

1

6

8

3

5

9

2

G (A)

4

7

1

6

9

3

5

8

2

T (A)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 48 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Mapping

Cyclic mapping of columns to processors works well for
dense problems, because it balances load and
communication is global anyway

To exploit locality in communication for sparse
factorization, better approach is to map columns in subtree
of elimination tree onto local subset of processors

Still use cyclic mapping within dense submatrices
(“supernodes”)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 49 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Subtree Mapping

00

00

00

0

0

0

1

1

1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2 3

3

3

3

3

3

3

3

3

0

0

1

2

2

3

2

3

0

1

3

1

0

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 50 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Fan-Out Sparse Cholesky
for j ∈ mycols

if j is leaf node in T (A) then
cdiv (j)
send L⋆j to processes in map (Struct (L⋆j))
mycols = mycols − { j }

end
end
while mycols ̸= ∅

receive any column of L, say L⋆k

for j ∈ mycols ∩ Struct (L⋆k)
cmod (j, k)
if column j requires no more cmods then

cdiv (j)
send L⋆j to processes in map (Struct (L⋆j))
mycols = mycols − { j }

end
end

end

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 51 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Fan-In Sparse Cholesky
for j = 1 to n

if j ∈ mycols or mycols ∩ Struct (Lj⋆) ̸= ∅ then
u = 0
for k ∈ mycols ∩ Struct (Lj⋆)

u = u+ ℓjk L⋆k

if j ∈ mycols then
incorporate u into factor column j
while any aggregated update column

for column j remains, receive one
and incorporate it into factor column j

end
cdiv (j)

else
send u to process map (j)

end
end

end

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 52 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Multifrontal Sparse Cholesky
Multifrontal algorithm operates recursively, starting from
root of elimination tree for A

Dense frontal matrix Fj is initialized to have nonzero
entries from corresponding row and column of A as its first
row and column, and zeros elsewhere

Fj is then updated by extend_add operations with update
matrices from its children in elimination tree

extend_add operation, denoted by ⊕, merges matrices by
taking union of their subscript sets and summing entries for
any common subscripts

After updating of Fj is complete, its partial Cholesky
factorization is computed, producing corresponding row
and column of L as well as update matrix Uj

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 53 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: extend_add


a11 a13 a15 a18
a31 a33 a35 a38
a51 a53 a55 a58
a81 a83 a85 a88

⊕


b11 b12 b15 b17
b21 b22 b25 b27
b51 b52 b55 b57
b71 b72 b75 b77



=



a11 + b11 b12 a13 a15 + b15 b17 a18
b21 b22 0 b25 b27 0
a31 0 a33 a35 0 a38

a51 + b51 b52 a53 a55 + b55 b57 a58
b71 b72 0 b75 b77 0
a81 0 a83 a85 0 a88



Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 54 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Multifrontal Sparse Cholesky
Factor(j)

Let {i1, . . . , ir} = Struct (L⋆j)

Let Fj =


aj,j aj,i1 . . . aj,ir
ai1,j 0 . . . 0

...
...

. . .
...

air,j 0 . . . 0


for each child i of j in elimination tree

Factor(i)
Fj = Fj ⊕Ui

end
Perform one step of dense Cholesky:

Fj =


ℓj,j 0
ℓi1,j

... I
ℓir,j


1 0

0 Uj

ℓj,j ℓi1,j . . . ℓir,j

0 I


Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 55 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Advantages of Multifrontal Method
Most arithmetic operations performed on dense matrices,
which reduces indexing overhead and indirect addressing

Can take advantage of loop unrolling, vectorization, and
optimized BLAS to run at near peak speed on many types
of processors

Data locality good for memory hierarchies, such as cache,
virtual memory with paging, or explicit out-of-core solvers

Naturally adaptable to parallel implementation by
processing multiple independent fronts simultaneously on
different processors

Parallelism can also be exploited in dense matrix
computations within each front

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 56 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Summary for Parallel Sparse Cholesky

Principal ingredients in efficient parallel algorithm for sparse
Cholesky factorization

Reordering matrix to obtain relatively short and well
balanced elimination tree while also limiting fill

Multifrontal or supernodal approach to exploit dense
subproblems effectively

Subtree mapping to localize communication

Cyclic mapping of dense subproblems to achieve good
load balance

2-D algorithm for dense subproblems to enhance
scalability

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 57 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Scalability of Sparse Cholesky

Performance and scalability of sparse Cholesky depend on
sparsity structure of particular matrix

Sparse factorization with nested dissection requires
factorization of dense matrix of dimension Θ(

√
n) for 2-D

grid problem with n grid points (
√
n is the size of the root

vertex separator), for which unconditional weak scalability
is possible

However, efficiency often deteriorates as a result of the
rest of the sparse factorization taking more time

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 58 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

References – Dense Cholesky

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz,
Communication-optimal parallel and sequential Cholesky
decomposition, SIAM J. Sci. Comput. 32:3495-3523, 2010

J. W. Demmel, M. T. Heath, and H. A. van der Vorst,
Parallel numerical linear algebra, Acta Numerica
2:111-197, 1993

D. O’Leary and G. W. Stewart, Data-flow algorithms for
parallel matrix computations, Comm. ACM 28:840-853,
1985

D. O’Leary and G. W. Stewart, Assignment and scheduling
in parallel matrix factorization, Linear Algebra Appl.
77:275-299, 1986

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 59 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

Sparse Elimination
Matrix Orderings
Parallel Algorithms

References – Sparse Cholesky
M. T. Heath, Parallel direct methods for sparse linear
systems, D. E. Keyes, A. Sameh, and V. Venkatakrishnan,
eds., Parallel Numerical Algorithms, pp. 55-90, Kluwer,
1997

M. T. Heath, E. Ng and B. W. Peyton, Parallel algorithms
for sparse linear systems, SIAM Review 33:420-460, 1991

J. Liu, Computational models and task scheduling for
parallel sparse Cholesky factorization, Parallel Computing
3:327-342, 1986

J. Liu, Reordering sparse matrices for parallel elimination,
Parallel Computing 11:73-91, 1989

J. Liu, The role of elimination trees in sparse factorization,
SIAM J. Matrix Anal. Appl. 11:134-172, 1990

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 60 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

References – Multifrontal Methods

I. S. Duff, Parallel implementation of multifrontal schemes,
Parallel Computing 3:193-204, 1986

A. Gupta, Parallel sparse direct methods: a short tutorial,
IBM Research Report RC 25076, November 2010

J. Liu, The multifrontal method for sparse matrix solution:
theory and practice, SIAM Review 34:82-109, 1992

J. A. Scott, Parallel frontal solvers for large sparse linear
systems, ACM Trans. Math. Software 29:395-417, 2003

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 61 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

References – Scalability
A. George, J. Lui, and E. Ng, Communication results for
parallel sparse Cholesky factorization on a hypercube,
Parallel Computing 10:287-298, 1989

A. Gupta, G. Karypis, and V. Kumar, Highly scalable
parallel algorithms for sparse matrix factorization, IEEE
Trans. Parallel Distrib. Systems 8:502-520, 1997

T. Rauber, G. Runger, and C. Scholtes, Scalability of
sparse Cholesky factorization, Internat. J. High Speed
Computing 10:19-52, 1999

R. Schreiber, Scalability of sparse direct solvers,
A. George, J. R. Gilbert, and J. Liu, eds., Graph Theory
and Sparse Matrix Computation, pp. 191-209,
Springer-Verlag, 1993

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 62 / 63

Sparse Matrices
Sparse Triangular Solve
Cholesky Factorization

Sparse Cholesky Factorization

References – Nonsymmetric Sparse Systems
I. S. Duff and J. A. Scott, A parallel direct solver for large
sparse highly unsymmetric linear systems, ACM Trans.
Math. Software 30:95-117, 2004

A. Gupta, A shared- and distributed-memory parallel
general sparse direct solver, Appl. Algebra Engrg.
Commun. Comput., 18(3):263-277, 2007

X. S. Li and J. W. Demmel, SuperLU_Dist: A scalable
distributed-memory sparse direct solver for unsymmetric
linear systems, ACM Trans. Math. Software 29:110-140,
2003

K. Shen, T. Yang, and X. Jiao, S+: Efficient 2D sparse LU
factorization on parallel machines, SIAM J. Matrix Anal.
Appl. 22:282-305, 2000

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 63 / 63

	Sparse Matrices
	Sparse Matrix Definitions
	Sparse Matrix Products

	Sparse Triangular Solve
	Sequential Sparse Triangular Solve
	Parallel Sparse Triangular Solve

	Cholesky Factorization
	Cholesky Factorization
	Computing Cholesky
	Cholesky Algorithm
	Parallel Algorithm

	Sparse Cholesky Factorization
	Sparse Elimination
	Matrix Orderings
	Parallel Algorithms

	

