
QR Factorization
Householder Transformations

Givens Rotations

Parallel Numerical Algorithms
Chapter 5 – Eigenvalue Problems

Section 5.1 – QR Factorization

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 1 / 31



QR Factorization
Householder Transformations

Givens Rotations

Outline

1 QR Factorization

2 Householder Transformations
Recursive TSQR
2D and 3D Householder QR

3 Givens Rotations

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 2 / 31



QR Factorization
Householder Transformations

Givens Rotations

QR Factorization

For given m× n matrix A, with m > n, QR factorization
has form

A = Q

[
R
O

]
where matrix Q is m×m with orthonormal columns, and
R is n× n and upper triangular

Can be used to solve linear systems, least squares
problems, and eigenvalue problems

As with Gaussian elimination, zeros are introduced
successively into matrix A, eventually reaching upper
triangular form, but using orthogonal transformations
instead of elementary eliminators

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 31



QR Factorization
Householder Transformations

Givens Rotations

Methods for QR Factorization

Householder transformations (elementary reflectors)

Givens transformations (plane rotations)

Gram-Schmidt orthogonalization

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Householder Transformations

Householder transformation has form

H = I − 2
vvT

vTv

where v is nonzero vector

From definition, H = HT = H−1, so H is both orthogonal
and symmetric

For given vector a, choose v so that

Ha =


α
0
...
0

 = α


1
0
...
0

 = αe1

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 5 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Householder Transformations

Substituting into formula for H, we see that we can take

v = a− αe1

and to preserve norm we must have α = ±‖a‖2, with sign
chosen to avoid cancellation

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 6 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Householder QR Factorization

for k = 1 to n

αk = −sign(akk)
√
a2kk + · · ·+ a2mk

vk =
[
0 · · · 0 akk · · · amk

]T − αkek
βk = vT

k vk
if βk = 0 then

continue with next k
for j = k to n

γj = vT
k aj

aj = aj − (2γj/βk)vk
end

end

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Basis-Kernel Representations

A Householder matrix H is represented by H = I − uuT ,
i.e. a rank-1 perturbation of the identity

We can combine r Householder matrices H1, . . . ,Hr into
a rank-r peturbation of the identity

H̄ =

r∏
i=1

Hi = I − Y V T ,where Y ,V ∈ Rn×r

Often, V = Y T where T is upper-triangular and Y is
lower-triangular, yielding

H̄ = I − Y T TY T

If Hi = I − yiy
T
i , then the ith column of Y is yi, while T is

defined by T−1 + T−T = Y TY

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Parallel Householder QR

A basis kernel representation of Householder
transformations, allows us to update a trailing matrix B as

H̄B = (I − Y T TY T )B = B − Y (T T (Y TB))

with cost O(n2r)

Performing such updates is essentially as hard as Schur
complement updates in LU

Forming Householder vector vk is also analogous to
computing multipliers in Gaussian elimination

Thus, parallel implementation is similar to parallel LU, but
with Householder vectors broadcast horizontally instead of
multipliers

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Panel QR Factorization

Finding Householder vector yi requires computation of the
norm of the leading vector of the ith trailing matrix, creating
a latency bottleneck much like that of pivot row selection in
partial pivoting
Other methods need L = Θ(log(p)) rather than Θ(n) msgs
For example Cholesky-QR and Cholesky-QR2 perform
R = Cholesky(ATA), Q = AR−1 (Cholesky-QR2 does
one step of refinement), requiring only a single allreduce,
but losing stability
Unconditional stability and O(log(p)) messages achieved
by TSQR algorithm with row-wise recursion (akin to
tournament pivoting)
Basis-kernel representation can be recovered by
constructing first r columns of H̄

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Cholesky QR2

Cholesky-QR can be made more stable [Yamamoto et al 2014]
As before, compute {Q̄, R̄} = Cholesky-QR(A)

Then, iterate {Q, R̂} = Cholesky-QR(Q̄)

R = R̂R̄

A = QR

Solution still bad when κ(A) ≥ 1/
√
εmach

But if κ(A) < 1/
√
εmach, it is numerically stable because

κ(Q̄) ≈ 1

For QR of a tall-skinny A with κ(A) < 1/
√
εmach, this

algorithm is easy to implement, stable, and scalable

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 11 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Recursive TSQR

Block Givens rotations yield another idea
We can also employ a recursive scheme analogous to
tournament pivoting for LU

Subdivide A =

[
AU

AL

]
and recursively compute

{QU ,RU} = QR(AU ), {QL,RL} = QR(AL) concurrently
with P/2 processors each

We have A =

[
QURU

QLRL

]
=

[
QU

QL

] [
RU

RL

]
Gather RU and RL and compute sequentially,[
RU

RL

]
= Q̃R

We now have A = QR where Q =

[
QU

QL

]
Q̃

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Recursive TSQR, Binary (Binomial) Tree

Householder vectors are denoted in yellow (R is R1)Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 13 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Cost Analysis of Recursive TSQR

We can subdivide the cost into base cases (tree leaves) and
internal nodes

Every processor computes a QR of their m/P × n leaf
matrix block

TRec-TSQR(m,n, P ) = TRec-TSQR(nP, n, 1) + (m/P )n2 · γ
Subsequently for each tree node, each processor we
sends/receives a message of size O(n2) and performs
O(n3) work to factorize 2n× n matrix
The total cost is

TRec-TSQR(m,n, P ) = O([mn2/P + n3 log(P )] · γ
+ n2 log(P ) · β + log(P ) · α)

Communication cost is higher than of Cholesky-QR2,
which is 2Tallreduce(n2/2, P ) = O(n2β + log(P )α)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Recovering Q in Recursive TSQR

Q1 Identity

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 15 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Householder Reconstruction

Given m× n matrix Q1, we can construct Y such that
Q = (I − Y TY T ) = [Q1,Q2] and Q is orthogonal

note that in the Householder representation, we have
I −Q = Y · TY T , where Y is lower-trapezoidal and TY T

is upper-trapezoidal

Let Q1 =

[
Q11

Q21

]
where Q11 is n× n, compute

{Y ,TY T
1 } = LU

([I −Q11

Q21

])
,

where Y1 is the upper-triangular n× n leading block of Y T

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Householder Reconstruction Stability

Householder reconstruction can be done with unconditional
stability

We need to be just a little more careful

{Y ,TY T
1 } = LU

([S −Q11

Q21

])
,

where S is a sign matrix (each value in {−1, 1}) with values
picked to match the sign of the diagonal entry within LU
These are the sign choices we need to make for regular
Householder factorization
Since all entries of Q are ≤ 1, pivoting is unnecessary
(partial pivoting would do nothing)
Since κ(Q) ≈ 1, Householder reconstruction is stable

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 17 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

2D Householder QR, Basis-Kernel Representation

Transpose and Broadcast Y

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 18 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

2D Householder QR, Basis-Kernel Representation

Reduce W = Y TA

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

2D Householder QR, Basis-Kernel Representation

Transpose W and Compute T TW

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

2D Householder QR, Trailing Matrix Update

Compute Y T TY TA and subsequently QTA = A− Y T TY TA

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 31



QR Factorization
Householder Transformations

Givens Rotations

Recursive TSQR
2D and 3D Householder QR

Elmroth-Gustavson Algorithm (3Dx2Dx1D)

One approach is to use column-recursion A = [A1,A2]

Compute {Y1,T1,R1} = QR(A1) recursively with P
processors
Perform rectangular matrix multiplications with
communication-avoiding algorithms to compute
B2 = (I − Y1T1Y

T
1 )TA2

Compute {Y2,T2,R2} = QR(B22) where B2 =

[
R12

B22

]
recursively
Concatenate Y1 and Y2 into Y and compute T from Y via
rectangular matrix multiplication

Output
{
Y ,T ,

[
R1 R12

R2

]}
Pick an appropriate number of columns for a TSQR
base-case

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 31



QR Factorization
Householder Transformations

Givens Rotations

Givens Rotations

Givens rotation operates on pair of rows to introduce
single zero

For given 2-vector a = [a1 a2]
T , if

c =
a1√
a21 + a22

, s =
a2√
a21 + a22

then

Ga =

[
c s
−s c

] [
a1
a2

]
=

[
α
0

]
Scalars c and s are cosine and sine of angle of rotation,
and c2 + s2 = 1, so G is orthogonal

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 31



QR Factorization
Householder Transformations

Givens Rotations

Givens QR Factorization

Givens rotations can be systematically applied to
successive pairs of rows of matrix A to zero entire strict
lower triangle

Subdiagonal entries of matrix can be annihilated in various
possible orderings (but once introduced, zeros should be
preserved)

Each rotation must be applied to all entries in relevant pair
of rows, not just entries determining c and s

Once upper triangular form is reached, product of rotations,
Q, is orthogonal, so we have QR factorization of A

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 31



QR Factorization
Householder Transformations

Givens Rotations

Parallel Givens QR Factorization

With 1-D partitioning of A by columns, parallel
implementation of Givens QR factorization is similar to
parallel Householder QR factorization, with cosines and
sines broadcast horizontally and each task updating its
portion of relevant rows

With 1-D partitioning of A by rows, broadcast of cosines
and sines is unnecessary, but there is no parallelism unless
multiple pairs of rows are processed simultaneously

Fortunately, it is possible to process multiple pairs of rows
simultaneously without interfering with each other

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 25 / 31



QR Factorization
Householder Transformations

Givens Rotations

Parallel Givens QR Factorization

Stage at which each subdiagonal entry can be annihilated
is shown here for 8× 8 example

×
7 ×
6 8 ×
5 7 9 ×
4 6 8 10 ×
3 5 7 9 11 ×
2 4 6 8 10 12 ×
1 3 5 7 9 11 13 ×


Maximum parallelism is n/2 at stage n− 1 for n× n matrix

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 31



QR Factorization
Householder Transformations

Givens Rotations

Parallel Givens QR Wavefront

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 31



QR Factorization
Householder Transformations

Givens Rotations

Parallel Givens QR Factorization

Communication cost is high, but can be reduced by having
each task initially reduce its entire local set of rows to
upper triangular form, which requires no communication

Then, in subsequent phase, task pairs cooperate in
annihilating additional entries using one row from each of
two tasks, exchanging data as necessary

Various strategies can be used for combining results of first
phase, depending on underlying network topology

Parallel partitioning with slanted-panels (slope -2) achieve
same scalablility as parallel algorithms for LU without
pivoting (see [Tiskin 2007])

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 28 / 31



QR Factorization
Householder Transformations

Givens Rotations

Parallel Givens QR Factorization

With 2-D partitioning of A, parallel implementation
combines features of 1-D column and 1-D row algorithms

In particular, sets of rows can be processed simultaneously
to annihilate multiple entries, but updating of rows requires
horizontal broadcast of cosines and sines

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 31



QR Factorization
Householder Transformations

Givens Rotations

References

E. Chu and A. George, QR factorization of a dense matrix
on a hypercube multiprocessor, SIAM J. Sci. Stat. Comput.
11:990-1028, 1990

M. Cosnard, J. M. Muller, and Y. Robert, Parallel QR
decomposition of a rectangular matrix, Numer. Math.
48:239-249, 1986

M. Cosnard and Y. Robert, Complexity of parallel QR
factorization, J. ACM 33:712-723, 1986

E. Elmroth and F. G. Gustavson, Applying recursion to
serial and parallel QR factorization leads to better
performance, IBM J. Res. Develop. 44:605-624, 2000

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 31



QR Factorization
Householder Transformations

Givens Rotations

References

B. Hendrickson, Parallel QR factorization using the torus-wrap
mapping, Parallel Comput. 19:1259-1271, 1993.

F. T. Luk, A rotation method for computing the
QR-decomposition, SIAM J. Sci. Stat. Comput. 7:452-459, 1986

D. P. O’Leary and P. Whitman, Parallel QR factorization by
Householder and modified Gram-Schmidt algorithms, Parallel
Comput. 16:99-112, 1990.

A. Pothen and P. Raghavan, Distributed orthogonal factorization:
Givens and Householder algorithms, SIAM J. Sci. Stat. Comput.
10:1113-1134, 1989

A. Tiskin, Communication-efficient parallel generic pairwise
elimination. Future Generation Computer Systems 23.2 (2007):
179-188.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 31


	QR Factorization
	Householder Transformations
	Recursive TSQR
	2D and 3D Householder QR

	Givens Rotations
	

