Parallel Numerical Algorithms

Chapter 6 — Matrix Models
Section 6.1 — Fast Fourier Transform

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of lllinois at Urbana-Champaign

CS 554/ CSE 512

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Outline

0 Convolution
@ Problem
@ Toom-Cook Algorithm

e Discrete Fourier Transform
@ Roots of Unity
o DFT
@ Inverse DFT

e Fast Fourier Transform
@ FFT Algorithm

© Parallel FFT
@ Binary Exchange Parallel FFT
@ Transpose Parallel FFT

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Convolution
Problem
Toom-Cook Algorithm

Convolution

Convolution takes input a and b and computes ¢

k
VEe0n—1] =Y ajbp;
j=0

@ If a and b are coefficients of degree n/2 — 1 polynomials
n/2—1 n/2—1

pa(r) = > apa®, pylx)= D byt
k=0 k=0

the convolution computes the coefficients ¢ of the product
n—1
pc(x) = pa(x)pb(-%') = Z Ckl'k
k=0

@ naive evaluation costs O(n?) operations

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Convolution
Problem
Toom-Cook Algorithm

Convolution and Toeplitz Matrices

@ Convolution can be interpreted as matrix-vector
multiplication with a triangular Toeplitz matrix

bo b1 by b3
0 by b1 b
[C(] C1 C2 03] = [a1 as as a4] 0 6) b(l] bi
0 0 0 b

@ Toeplitz and Hankel matrices (in the latter, each
antidiagonal is defined by a single element) provide a
general matrix representation for convolutional operators

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Convolution
Problem
Toom-Cook Algorithm

Convolution via Interpolation (Toom-Cook)

@ Evaluate p, and p;, at a set of nodes xg, ..., T,—1
@ The values of p. at each z; are then easily obtained

pe(®j) = pa(;)pp(z;))

@ The inverse DFT, F,; !p.(z) interpolates the values of the
polynomial p. at each x; producing its coefficients c

@ For a Vandermonde matrix V,, associtated with nodes
xo, ..., Tn_1, the overall procedure is described by

c= Vnil[(vna) © (Vab)]

where © is an elementwise product (a and b are padded
with trailing zeros)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Roots of Unity
DFT
Inverse DFT

Discrete Fourier Transform

Roots of Unity

@ For given integer n, we use notation
wy, = cos(2m/n) — isin(2w/n) = e~ 2T/

for primitive nth root of unity, where i = /—1

@ nth roots of unity, sometimes called twiddle factors in this
context, are then given by w”® orby w;*, k=0,...,n—1

@ For convenience, we will assume that n is power of two,
and all logarithms used will be base two

@ We will also index sequences (components of vectors)
starting from 0 rather than 1

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Roots of Unity
DFT
Inverse DFT

Discrete Fourier Transform

Discrete Fourier Transform

@ Discrete Fourier Transform, or DFT, of sequence
x = [x0,...,2,_1]7 iS sSEQUENCE Y = [10,...,Yn_1]] given
by

n—1
ym:Zkanmk, m=0,1,...,n—1
k=0
or
y=F,x

where entries of DFT matrix F,, are given by
{Fn}mk = w;nk’

@ The DFT matrix is a Vandermonde matrix with nodes

0 n

Wy -y Wh g

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Roots of Unity
DFT
Inverse DFT

Discrete Fourier Transform

Inverse DFT

@ ltis easily seen that
F,'=(1/n)F,

@ Hence k(F),) = 1, while for Vandermonde matrices with
real nodes, condition number grows exponentially with n

@ So, since (wk)* = w,*, inverse DFT is given by

1n—1
:Bk—nz:oymw;mk k=0,1,...,n—1
m=

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Roots of Unity
DFT
Inverse DFT

Discrete Fourier Transform

Example

1 1 1 1 1 1 1 1
F— 1wl w? Wl _ 1 — -1 7
YT W2 oWt W T -1 1 -1
1 w3 Wb W 1 7 —1 —1
1 1 1 1 1 1 1 1
_ 1 wlt w? w3 1 i =1 —i
1 _ _
AF, = 1 w2 w?t w1 -1 1 -1
1 w3 wb w? 1 —i =1 3

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



FFT Algorithm
Fast Fourier Transform g

Radix-2 Fast Fourier Transform (FFT)

@ Consider b = F,,a, we have

n—1
Vieon—1 b= wifa
k=0

@ Express DFT as two DFTs of dimension n/2, with a
different root of unity w,, /»
@ Separate summands into odds and evens, use w,,/; = w?

n
n/2—1 n/2—1
_ j(2k j(2k+1
bi= > wiag + > WP ag.,
k=0 k=0
n/2—1 n/2—1

_ Jk J Jk
= Z wn/Qagk + wy, Z wn/Qang
k=0 k=0

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



X FFT Algorithm
Fast Fourier Transform

Radix-2 Fast Fourier Transform (FFT), contd.

n/2—1 n/2—1

_ E Jk J § Jk
= wn/2a2k +wn wn/2a2k+1
k=0 k=0

Uj Vj

The summations for b; and b;_,,/, are closely related,

n/2—1 n/2—1

+n/2)k i 2 j+n/2)k
bjtns2 = Z wnj/;‘/ asg + Wit/ Z wff/zn/) A2ki1
k=0
Gn/Dk _ ik o n/2\k _ n/2 _
Now w /2 w,, /o SINCE (wn/z) =1* = 1 and using wy’~ = —1,
n/2—1 n/2—1
" ) "
bjyns2 = Z wi/gamﬂ —wy, Z wi/2a2k+1
k=0 k=0
uj- U]‘

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



X FFT Algorithm
Fast Fourier Transform

Radix-2 Fast Fourier Transform (FFT), contd.

@ Let vectors u and v be two recursive FFTs, Vj € [0,n/2 — 1]

n/2-1 n/2—1
_ jk — Jk
R DR TR DA
k=0 k=0

@ Given u and v scale using "twiddle factors" z; = w? - v;

@ Then it suffices to combine the vectors as follows b = {u * z}

u—z

@ This recombination is an FFT of dimension 2

b:[gjzvec([bl bg]):VeC([u z] B _11D

F4[0:2,0:2]
@ Radix-r algorithm for any A € R™>"/"

F, vec(A) = vec (([F,[0:7,0:n/r] © (F,A)F,;,)")

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



X FFT Algorithm
Fast Fourier Transform

FFT Algorithm

procedure fft(z,y,n,w)
if n =1 then
y[0] = =[0]
else
fork=0to (n/2) —1
plk] = z[2k]
slk] = x[2k + 1]
end
fft(p,q,n/2,w?)
fft(s,t,n/2,w?)
fork=0ton—1
y[k] = q[k mod (n/2)] + w*t[k mod (n/2)]
end
end

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



. FFT Algorithm
Fast Fourier Transform

Complexity of FFT Algorithm

@ In the radix-2 algorithm, there are log n levels of recursion
(depth), each of which involves ©(n) arithmetic operations,
so total cost is ©(n logn)

@ By contrast, straightforward evaluation of matrix-vector
product defining DFT requires ©(n?) arithmetic operations.

@ Alternatively, setting the radix to be the square root of the

vector dimension at each step, yields 2/n FFTs of size
v/n, O(loglogn) levels of recursion with overall work,

Q(n) = 2VnQ(vn) + O(n) = O(nlogn),

and due to the dependency among left and right FFTs,
depth D(n) = 2D(y/n) + 1 = O(logn).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



. FFT Algorithm
Fast Fourier Transform

Computing Inverse DFT

@ Because of similar form of DFT and its inverse, FFT
algorithm can also be used to compute inverse DFT
efficiently

@ Ability to transform back and forth quickly between time
and frequency domains makes it practical to perform any
computations or analysis that may be required in
whichever domain is more convenient and efficient

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Binary Exchange Parallel FFT
Transpose Parallel FFT

Parallel FFT

Binary Exchange Parallel FFT

@ To obtain fine-grain decomposition of FFT, we assign input
data x;, to task k, which also computes result y;

@ At stage m of algorithm, tasks k& and j exchange data,
where & and j differ only in their mth bits

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Binary Exchange Parallel FFT
Transpose Parallel FFT

Parallel FFT

Binary Exchange Parallel FFT

@ There are n tasks and log n stages, so parallel time
required to compute FFT is

T, =(y+a+p)logn

where + is cost of multiply-add, and « + 5 is cost of
exchanging one number between pair of tasks at each
stage

@ Hypercube is natural network for FFT algorithm

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Binary Exchange Parallel FFT
Transpose Parallel FFT

Parallel FFT

Binary Exchange Parallel FFT

@ To obtain smaller number of coarse-grain tasks,
agglomerate sets of n/p components of input and output
vectors x and y, where we assume p is also power of two

foA—'
i < .
Xy

2
X3 Y3
X4 A V4
X5 Vs

xG? \ > Y
X7 \./\:><]y7

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Binary Exchange Parallel FFT
Transpose Parallel FFT

Parallel FFT

Binary Exchange Parallel FFT

@ Components having their log p most significant bits in
common are assigned to same task

@ Thus, exchanges are required in binary exchange
algorithm only for first log p stages, since data are local for
remaining log(n/p) stages

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Binary Exchange Parallel FFT
Transpose Parallel FFT

Parallel FFT

Binary Exchange Parallel FFT

@ Each stage involves updating of n/p components by each
task, and exchange of n/p components for each of first
log p stages

@ Thus, total time required using hypercube network is
T, = a(logp) + Bn (logp)/p + vy n(logn)/p
@ To determine isoefficiency function, set
ynlogn ~ E(aplogp+ fnlogp+vyn logn)

which holds if n = ©(p), so isoefficiency function is
©(p logp), since T1 = O(n logn)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Binary Exchange Parallel FFT
Transpose Parallel FFT

Parallel FFT

Transpose Parallel FFT

@ Binary exchange algorithm has one phase that is
communication free and another phase that requires
communication at each stage

@ Another approach is to realign data so that both
computational phases are communication free, and only
communication is for data realignment phase between
computational phases

@ To accomplish this, data can be organized in \/n x \/n
array, as illustrated next for n = 16

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Binary Exchange Parallel FFT
Transpose Parallel FFT

Parallel FFT

Transpose Parallel FFT

12

() () (=) &)

13 @ 15
@ 11 transpose

—_—

() () () (&)
(=)
() (D =) ()

data
initial phase realignment
phase

DEORONC

(8) () (o) ()

JHONONE

(0) (1) () (3)

final phase

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Binary Exchange Parallel FFT
Transpose Parallel FFT

Parallel FFT

Transpose Parallel FFT

@ If array is partitioned by columns, which are assigned to
p < /n tasks, then no communication is required for first

log(y/n ) stages

@ Data are then transposed using all-to-all personalized
collective communication, so that each row of data array is
now stored in single task

@ Thus, final log(y/n ) stages now require no communication

@ Overall performance of transpose algorithm depends on
particular implementation of all-to-all personalized
collective communication

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



Binary Exchange Parallel FFT
Transpose Parallel FFT

Parallel FFT

Transpose Parallel FFT

@ Taking into account the cost of an all-to-all,

O(alogp + Bnlog(p)/p), transpose-based approach yields
total parallel time

T, = O(a logp 4+ Bnlog(p)/p+ yn log(n)/p)

@ This time is the same as for the binary exchange parallel
FFT, the only advantage being that all communication
happens at once (can be performed with a single collective
communication routine).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



References

@ A. Averbuch and E. Gabber, Portable parallel FFT for
MIMD multiprocessors, Concurrency: Practice and
Experience 10:583-605, 1998

@ C. Calvin, Implementation of parallel FFT algorithms on
distributed memory machines with a minimum overhead of
communication, Parallel Computing 22:1255-1279, 1996

@ R. M. Chamberlain, Gray codes, fast Fourier transforms,
and hypercubes, Parallel Computing 6:225-233, 1988

@ E. Chu and A. George, FFT algorithms and their
adaptation to parallel processing, Linear Algebra Appl.
284:95-124, 1998

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



References

@ A. Edelman, Optimal matrix transposition and bit reversal
on hypercubes: all-to-all personalized communication,
J. Parallel Computing 11:328-331, 1991

@ A. Gupta and V. Kumar, The Scalability of FFT on Parallel
Computers, IEEE Trans. Parallel Distrib. Sys. 4:922-932,
1993

@ R. B. Pelz, Parallel FFTs, D. E. Keyes, A. Sameh, and
V. Venkatakrishnan, eds., Parallel Numerical Algorithms,
pp. 245-266, Kluwer, 1997

@ P. N. Swarztrauber, Multiprocessor FFTs, Parallel
Computing 5:197-210, 1987

@ J. W. Demmel, Applied Numerical Linear Algebra, SIAM
Philadelphia, 1997.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms



	Convolution
	Problem
	Toom-Cook Algorithm

	Discrete Fourier Transform
	Roots of Unity
	DFT
	Inverse DFT

	Fast Fourier Transform
	FFT Algorithm

	Parallel FFT
	Binary Exchange Parallel FFT
	Transpose Parallel FFT

	

