

Vanishing Viscosity Solutions

Goal: neither uniqueness nor existence poses a problem.

How?

Entropy-Flux Pairs

What are features of (physical) entropy?

Definition (Entropy/Entropy Flux)

An entropy $\eta(u)$ and an entropy flux $\psi(u)$ are functions so that η is convex and

$$\eta(u)_t + \psi(u)_x = 0$$

for smooth solutions of the conservation law.

Finding Entropy-Flux Pairs

assure y & (?) $\eta(u)_t + \psi(u)_x = 0$. Find conditions on η and ψ .

$$\eta(u)_t + \psi(u)_x = 0. \text{ Find conditions on } \eta \text{ and } \psi.$$

$$Assume smooth u.$$

$$\eta'(u)_{x_t} + \psi'(u)_{x_t} = 0$$

$$u_{t_t} + \psi'(u)_{x_t} = 0$$

Come up with an entropy-flux pair for Burgers.

Back to Vanishing Viscosity (1/2)

$$u_t + f(u)_x = \varepsilon u_{xx}$$

What's the evolution equation for the entropy?

$$\eta'(u) \cdot u_{+} + \eta'(u) \cdot j'(u) \cdot u_{x} = \epsilon \eta'(u) \cdot u_{x}$$

$$\eta(u)_{+} + \gamma'(u)_{x} = \epsilon (\eta'(u) \cdot u_{x})_{x} - \epsilon \eta''(u) \cdot u_{x}^{2}$$

$$= 20$$

Back to Vanishing Viscosity (2/2)

$$\eta(u)_t + \psi'(u)_x = \varepsilon(\eta'(u)u_x)_x - \varepsilon\eta''(u)u_x^2$$

Integrate this over $[x_1, x_2] \times [t_1, t_2]$.

$$\int_{t_{1}}^{t_{1}} y(u)_{t} + Y(u)_{x} dx dt$$

$$= \epsilon \int_{t_{1}}^{t_{2}} y'(u(x_{2}t))u_{x}(x_{1}t) - y'(u(x_{1}t))u_{x}(x_{1}t) dt$$

$$- \epsilon \int_{t_{1}}^{t_{2}} y'(u)u_{x}^{2} dx dt$$

$$- \epsilon \int_{t_{1}}^{t_{2}} y'(u)u_{$$

Entropy solution

Definition (Entropy solution)

The function u(x, t) is the entropy solution of the conservation law if for all convex entropy functions and corresponding entropy fluxes, the inequality

$$\eta(u)_t + \psi(u)_x \le 0$$

is satisfied in the weak sense.

showeds viscosity solution - entropy solution

Conservation of Entropy?

What can you say about conservation of entropy in time?

$$0 \ge \int_{x_1}^{\xi} \frac{1}{y(u)_{\xi} + y(u)_{\chi}} dx dt$$

$$= \left(\int_{x_1}^{x_2} \frac{1}{y(u(x_1|1))} dx\right)_{\xi_1}^{\xi_2} - \left(\int_{\xi_1}^{\xi_2} \frac{1}{y(u(x_1|1))} dt\right)_{x_1}^{x_2}$$

$$\int_{x_1}^{x_2} \frac{1}{y(u(x_1|1))} dx \le \int_{x_1}^{x_2} \frac{1}{y(u(x_1|1))} - \frac{1}{y(u(x_1|1))} dx$$

$$U_{\xi} + \int_{\xi_1}^{\xi_2} \frac{1}{y(u(x_1|1))} dx$$

$$U_{\xi} + \int_{\xi_1}^{\xi_2} \frac{1}{y(u(x_1|1))} dx$$

Total Variation

Simpler form if u is differentiable?

Hiking analog?

Total Variation and Conservation Laws

Theorem (Total Variation is Bounded)

Let u be a solution to a conservation law with $f''(u) \geqslant 0$. Then:

$$\mathsf{TV}(u(t+\Delta t,\cdot)) \leq \mathsf{TV}(u(t,\cdot))$$
 for $\Delta t \geqslant 0$.

Theorem (L^1 contraction)

Let u, v be viscosity solutions of the conservation law. Then

$$\|u(t+\Delta,\cdot)-v(t+\Delta t,\cdot)\|_{L^1(\mathbb{R})}\leq \|u(t,\cdot)-v(t,\cdot)\|_{L^1(\mathbb{R})}\quad \text{ for } \Delta t\geqslant 0.$$

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws
Theory of 1D Scalar Conservation Laws
Numerical Methods for Conservation Laws
Higher-Order Finite Volume
Finite Volume in 2D

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hypberbolic Problems

A Glimpse of Integral Equation Methods for Elliptic Problems

Finite Difference for Conservation Laws? (1/2)

$$\begin{cases} u_t + \left(\frac{u}{2}\right)_x^2 = 0 \\ u(x,0) = \begin{cases} 1 & x < 0, \\ 0 & x \ge 0. \end{cases} \end{cases}$$

7(14)=4 141=4

5= [161]

Entropy Solution?

Rewrite the PDE to 'match' the form of advection $u_t + au_x = 0$:

Equivalent?

Finite Difference for Conservation Laws? (2/2)
Recall the *upwind scheme* for $u_t + au_x = 0$:

Write the upwind FD scheme for $u_t + uu_x = 0$:

Schemes in Conservation Form

Definition (Conservative Scheme)
A conservation law scheme is called conservative iff it can be written as
where $f^*\dots$

Theorem (Lax-Wendroff)

If the solution $\{u_{j,\ell}\}$ to a conservative scheme converges (as $\Delta t, \Delta x \to 0$) boundedly almost everywhere to a function u(x,t), then u is a weak solution of the conservation law