Harten's Lemma

Theorem (Harten's Lemma)

If a scheme can be written as

$$
\bar{u}_{j,\ell+1} = \bar{u}_{j,\ell} + \lambda (C_{j+1/2}\Delta_+ \bar{u}_j - D_{j-1/2}\Delta_- \bar{u}_j)
$$

with $C_{j+1/2} \geq 0$, $D_{j+1/2} \geq 0$, $1 - \lambda(C_{j+1/2} + D_{j+1/2}) \geq 0$ and $\lambda=\Delta t/\Delta x$, then it is TVD.

As a matter of notation, we have

$$
\Delta_+ u_j = u_{j+1} - u_j,
$$

\n
$$
\Delta_- u_j = u_j - u_{j-1}.
$$

We have omitted the time subscript for the time level ℓ .

Minmod is TVD

$$
\bar{M}_{j,\ell H} = \bar{M}_{j} + \bar{M}_{j} (C \Delta_{+} - D \Delta_{-})
$$

Show that Minmod is TVD:

$$
\overline{v}_{j_{1}k+1} = \overline{u}_{j} - \lambda \left(\{ |\overline{u}_{j} + \hat{u}_{j} \rangle \right) - \left\{ (\overline{u}_{j-1} + \hat{u}_{j-1}) \right\} \n= \overline{u}_{j} - \lambda \left(\cdot D_{j-\frac{1}{2}} \Delta_{-} \overline{u}_{j} \right) \n\overline{v}_{j} - \frac{\left\{ (\overline{u}_{j} + \hat{u}_{j} \right\} - \left\{ (\overline{u}_{j-1} + \hat{u}_{j-1}) \right\} - \left\{ (\overline{u}_{j} - \overline{u}_{j}) + \overline{u}_{j} - \overline{u}_{j-1} \right\} \right\}}{\overline{u}_{j} - \overline{u}_{j} - \overline{u}_{j-1}} = \overline{\left\{ \left(\overline{u}_{j} - \overline{u}_{j} \right) - \left((\overline{u}_{j} - \overline{u}_{j}) \right) - \left((\overline{u}_{j} - \overline{u}_{j}) \right) \right\}} \n\overline{v}_{j} - \overline{u}_{j-1} - \overline{u
$$

Minmod: CFL restriction?

Derive a time step restriction for Minmod.

$$
D_{j-\frac{1}{2}} \leq \int_{1-\frac{3}{2}}^1 (\eta) \cdot \frac{3}{2} \leq \max_{x=1} |\rho'(y)| \cdot \frac{3}{2}
$$

0 \leq $-\frac{1}{2} \log \frac{3}{2} \log \frac{3}{2}$

What about Time Integration?
 $SSPRk(2,2)$ $\overline{1}V(n_{l+1})$ $u^{(1)} = u_{\ell} + h_t L(u_{\ell}), \qquad u_{\ell+1} = \frac{u_{\ell}}{2} + \frac{1}{2}$ $\frac{1}{2}(u^{(1)}+h_tL(u^{(1)})).$

Above: A version of RK2 with L the ODE RHS. Will this cause wrinkles?

$$
\int V\left(\alpha \frac{\pi}{4} + (1-\alpha)\frac{v}{2}\right) \leq \alpha \text{TV}(\pi) \cdot (1-\alpha) \text{TV}(\theta) \quad (\theta \leq \alpha \leq 1)
$$
\n
$$
\text{TV}\left(\mu_{\ell H}\right) = \text{TV}\left(\frac{\mu_{\ell}}{2} + \frac{1}{2}\left(u^{(1)} + l_{\mu_{\ell}}\left(\frac{v}{u^{(1)}}\right)\right)\right)
$$
\n
$$
\leq \frac{1}{2} \text{TV}\left(\frac{\mu_{\ell}}{2} + \frac{1}{2} \text{TV}\left(\frac{v}{u^{(1)}} + l_{\mu_{\ell}}\left(\frac{v}{u^{(1)}}\right)\right)\right)
$$
\n
$$
\leq \frac{1}{2} \text{TV}\left(\frac{\mu_{\ell}}{2} + \frac{1}{2} \text{TV}\left(\frac{v}{u^{(1)}} + l_{\mu_{\ell}}\left(\frac{v}{u^{(1)}}\right)\right)\right)
$$
\n
$$
\leq \frac{1}{2} \text{TV}\left(\frac{\mu_{\ell}}{2} + \frac{1}{2} \text{TV}\left(\frac{v}{u^{(1)}}\right) \leq \text{TV}\left(\frac{\mu_{\ell}}{2}\right)
$$

Total Variation is Convex

Show: $TV(\cdot)$ is a convex functional.

$$
0 \leq \alpha \leq 1
$$
\n
$$
\mathbb{T}V\left(\alpha \overrightarrow{u} + (1-\alpha) \overrightarrow{v}\right)
$$
\n
$$
\leq \sum_{j} \alpha \left(\alpha_{j} \cdot n_{j-1}\right) + (1-\alpha) \left(\alpha_{j} \cdot n_{j-1}\right)
$$
\n
$$
\leq \alpha \sum_{j} |n_{j} \cdot n_{j-1}| \rightarrow (1-\alpha) \sum_{j} |n_{j} \cdot n_{j-1}|
$$
\n
$$
\mathbb{T}V(v)
$$

TVD and High Order

High Order at Smooth Extrema

▶ TVB Schemes [Shu '87]

▶ ENO [Harten/Engquist/Osher/Chakravarthy '87]

- ▶ Define $W_j = w(x_{j+1/2}) = \int_{x_{1/2}}^{x_{j+1/2}} u(\xi, t) d\xi = h_x \sum_{i=1}^j \bar{u}_i$
	- \triangleright Observe $u_{j+1/2} = w'(x_{j+1/2})$.
	- ▶ Approximate by interpolation/numerical differentiation.
- ▶ Start with the linear function $p^{(1)}$ through W_{i-1} and W_i
- \triangleright Compute divided differences on (W_{i-2}, W_{i-1}, W_i)
- ▶ Compute divided differences on (W_{i-1}, W_i, W_{i+1})
- \triangleright Use the one with the smaller magnitude to extend $p^{(1)}$ to quadratic
- \triangleright (and so on, adding points on the side with the lowest magnitude)

� WENO [Liu/Osher/Chan '94]

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Theory of 1D Scalar Conservation Laws Numerical Methods for Conservation Laws Higher-Order Finite Volume Outlook: Systems and Multiple Dimensions

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hypberbolic Problems

A Glimpse of Integral Equation Methods for Elliptic Problems

Systems of Conservation Laws

Linear system of hyperbolic conservation laws, $A \in \mathbb{R}^{m \times m}$. $u_t + Au_x = 0$, $u(x, 0) = u_0(x)$. Assumptions on A ? hyperbolic if A diagonalizable real cigouralnes $A\overrightarrow{r_{p}}=\lambda_{p}\overrightarrow{r_{p}}(p=1...n)$ Called strictly hyperbolic
 $V=R^{-1}\overrightarrow{r_{p}} \longrightarrow \overrightarrow{v_{t}}+\Lambda \overrightarrow{v_{x}}=\overrightarrow{O}$ "closederstic variables" $A \mathbb{R} = \mathbb{R} \wedge$

Linear System Solution

$$
\mathbf{v} = R^{-1} \mathbf{u}, \qquad \mathbf{v}_t + \Lambda \mathbf{v}_x = 0.
$$

Write down the solution.

$$
u(x, d) = \sum_{\rho} r_{\rho} v_{\rho}(x - \lambda_{\rho} t)
$$

$$
\vec{v}(x) = \mathbb{R}^{1} \sum_{\nu} (x, \theta)
$$

What is the impact on boundary conditions? E.g. $(\lambda_p) = (-c, 0, c)$ for a BC at $x = 0$ for $[0, 1]$? v_3

Characteristics for Systems (1/2) $\frac{1}{\log p}$ Consider system $u_t + f(u)_x = 0$. Write in quasilinear form U_{ϵ} + $A(\mu)$ μ_{κ} = O $A(\mu)$ = \int_{α}^{α} When hyperbolic?A(u) Mag. w/ sol ego. Jonly local

Are values of *still constant along characteristics?*

$$
ho_1
$$
 but CV are.

Shocks and Riemann Problems for Systems

$$
u_t + Au_x = 0,
$$

$$
u(x,0) = \begin{cases} u_t & x < 0, \\ u_r & x > 0. \end{cases}
$$

Æ

Solution? (Assume strict hyperbolicity with $\lambda_1 < \lambda_2 < \cdots < \lambda_m$.)