Today

\n**Following the PDEs via Solve**

\n
$$
= \frac{1}{n} \int_{0}^{n} h \cdot PDEs = \frac{1}{n} \int_{0}^{n} \frac{1}{n} h \cdot PDEs = \frac{1}{n} \int_{0}^{n} \frac{1}{n} \cdot \frac{1}{n} \cdot
$$

Amanconaute

- Feedback
- Jits' improved
- HWY due Fridag

An Elliptic Model Problem

Let $\Omega \subset \mathbb{R}^n$ open, bounded, $f \in H^1(\Omega)$.

$$
-\nabla \cdot \nabla u + u = f(x) \quad (x \in \Omega),
$$

$$
u(x) = 0 \quad (x \in \partial \Omega).
$$

Let $V:\neq H_0^1(\Omega)$. Integration by parts? (Gauss's theorem applied to $\bm{a}\bm{b}$):

Motivation: Bilinear Forms and Functionals ζ $\frac{1}{\Omega} \nabla u \cdot \nabla v +$ � Ω $uv' =$ � fv.

This is the weak form of the strong-form problem. The task is to find a $u \in V$ that satisfies this for all test functions $v \in V$.

Recast this in terms of bilinear forms and functionals:

$$
a\left(\nu\right)\nu\right) = g\left(\nu\right)
$$

Dual Spaces and Functionals

$\int |x+y| > \int (x) + \int |y|$

Bounded Linear Functional

Let $(V, \|\cdot\|)$ be a Banach space. A linear functional is a linear function $g: V \to \mathbb{R}$. It is bounded (\Leftrightarrow continuous) if there exists a constant C so that $|g(v)| \leq C ||v||$ for all $v \in V$. \propto $g(v) + \beta h(v) - k(v)$

Dual Space

Let $(V, \|\cdot\|)$ be a Banach space. Then the dual space V' is the space of bounded linear functionals on V.

Dual Space is Banach (cf. e.g. Trèves 1967)

 V' is a Banach space with the dual norm

$$
\|g\|_{V^{1}} = \sup_{v \in V^{(0)}} \frac{|g(v)|}{\|v\|_{V}}
$$

Functionals in the Model Problem

 $\begin{array}{c}\n a(n, v) = - \\
3|v| + \int_{0}^{1} v = (1, v) v \end{array}$ Is g from the model problem a bounded functional? (In what space?)

 $\|g\|_{U'}=\sup_{V\in H^{1,\nu}_{\rho}\setminus\{0\}}\frac{|\langle f,v\rangle_{\mathbb{C}^{\mathbb{Z}}}|}{\|v\|_{H'}}\leq\frac{\|f\|_{C'}\|v\|_{C}}{\|v\|_{L^2}+ \|Q_v\|_{H}}$

That bound felt loose and wasteful. Can we do better?

$$
||f||_{H^{-1}} = \sup_{v \in H^{1}(\mathbb{R}\setminus\{0\}} |f(v)|
$$

$$
||f||_{H^{-1}} < \infty \iff f \in H^{-1}
$$

Riesz Representation Theorem (1/3)

$$
a(u_{j}v) = (u_{j}v)_{j \neq j}
$$

Let V be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$.

Theorem (Riesz)

Let g be a bounded linear functional on V, i.e. $g \in V'$. Then there exists a unique $u \in V$ so that $g(v) = \langle u, v \rangle$ for all $v \in V$. $g:\mathbb{R}^n\to\mathbb{R}$ \overline{K} Lot $g \in V'$. $\mathcal{W}(\cdot)$ unligence. $-W(g)=V.$ $w=0$ does the $j\partial v$ $- N(g) \neq V$ let we $N(g)^{\perp}$ x=g(v) $\neq \varnothing$. $\int \left(\frac{\delta(\eta)}{\eta} \right)^{\alpha} = \frac{\delta(\eta)}{\eta(\eta)} \cdot \delta(\eta) = \delta(\eta)$ Let vcV arbitrary. $E := V - (g(v)/x) V$. $g(z)=0 \Rightarrow z \in \sqrt{q}$

 $5+U(5)$ $(s^{1}n)=0$ $(\begin{array}{ccc} \text{(because } & \text{if } & \text{$

k,

Riesz Representation Theorem: Proof (2/3)

Have
$$
w \in N(g)^{\perp} \setminus \{0\}, \alpha = g(w) \neq 0, \text{ and } z := v - (g(v)/\alpha)w \perp w.
$$

\n
$$
0 = \left\langle v - \frac{g(v)}{d} w^2 w^2 \right\rangle \iff \left\langle \frac{g(v)}{d} v^2 w^2 \right\rangle \iff \left\langle v^2 w^2 w^2 \right\rangle \iff \left\langle v^2 w^2 w^2 \right\rangle
$$
\n
$$
\xrightarrow{\text{supp} \text{supp} \
$$

Riesz Representation Theorem: Proof (3/3)

Uniqueness of u ?

Suppose u and u' are Riesz repusulers.
\n
$$
g(v) = \langle u, v \rangle = \langle u, v \rangle \implies 0 \approx \langle u, -u, v \rangle
$$

Back to the Model Problem

$$
a(u, v) = \langle \nabla u, \nabla v \rangle_{L^2} + \langle u, v \rangle_{L^2} = \langle \nu, \nu \rangle_{\mu^1}
$$

$$
g(v) = \langle f, v \rangle_{L^2}
$$

$$
\langle v, v \rangle_{\mu^1} = a(u, v) = g(v)
$$

Have we learned anything about the solvability of this problem?

Poisson

Let $\Omega \subset \mathbb{R}^n$ open, bounded, $f \in H^{-1}(\Omega)$.

This is called the Poisson problem (with Dirichlet BCs).

Weak form?

 $N_1V \in H_0^{\dagger}$ \int_{A} In ∇v dx = $\int_{A} dv$ $a\left(w, y\right)$

Ellipticity

Let V be Hilbert space.

V-Ellipticity

A bilinear form $a(\cdot, \cdot) : V \times V \to \mathbb{R}$ is called coercive if there exists a constant $c_0 > 0$ so that

$$
C_{\circ}||u||_{V}^{1} \leq d|u_{1}u| \qquad f_{\circ r} \text{ all } n \in V
$$

 $a|_{U_1}v|_{U_2}$

and a is called continuous if there exists a constant $c_1 > 0$ so that

$$
|a(u_{1}v)| \leq c_1 \|u\|_{V} \|v\|_{V}.
$$

If a is both coercive and continuous on V, then a is said to be V -elliptic.

Lax-Milgram Theorem

Let V be Hilbert space with inner product $\langle \cdot, \cdot \rangle$.

\rightarrow

Lax-Milgram, Symmetric Case

Let a be a V-elliptic bilinear form that is also symmetric, and let g be a bounded linear functional on V.

Then there exists a unique $u \in V$ so that $a(u, v) = g(v)$ for all $v \in V$.

a shift defines an inner product.
\n
$$
P(u,w) = a(n, n) \ge c\|u\|_{v}1 \ge 0 \qquad \text{for all } w
$$
\n
$$
C \text{ is not only in } \mathbb{C}
$$
\n
$$
0 = (a_{1}w)_{a} = a_{1}(u, u) \ge c_{0} \|u\|_{v}^{2} \ge 0
$$
\n
$$
\Rightarrow C \Rightarrow (a_{1}w)_{a} = a_{1}(u, u) \ge c_{0} \|u\|_{v}^{2} = 0 \Rightarrow u = 0
$$
\n
$$
\Rightarrow C \Rightarrow 0 \Rightarrow u = 0
$$
\n
$$
\Rightarrow C \Rightarrow 1 \le m \neq 0 \Rightarrow R \text{ is a. } \text{where } \text{and } \text{the } 0 \le k \le 1 \text{ and } \text{the } k \le k.
$$

Back to Poisson

$$
\left\|\nabla u\right\|_{\mathcal{L}^2} \leq \left\|\left|u\right\|\right|_{\mathcal{L}^2} + \left\|\left|u\right\|\right|_{\mathcal{L}^2} \leq \left\|\left|u\right\|_{\mathfrak{f}^{\beta}}
$$

Can we declare victory for Poisson?

$$
|a(u,v)| = |\n\{\nabla u \cdot \nabla v \mid \frac{1}{2} (\nabla u, \nabla v)_{C}\} \le ||\nabla u||_{C^{2}} ||\nabla v||_{L^{2}} \le |u||_{H^{1}} \cdot ||u||_{H^{1}}.
$$
\n
$$
a(u, u) = \n\begin{cases} \n\nabla u \cdot \nabla u > C_{o} \\ \n\end{cases} \quad \left(\n\begin{cases} \n\nabla u \cdot \nabla u + \int u^{2} \cdot \nabla u \cdot \
$$

Can this inequality hold in general, without further assumptions?