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An Elliptic Model Problem
Let Q C R" open, bounded, f € HI(Q).

-V -Vu+u = f(x) (xe€Q),
ulx) = 0 (x € 09).
Let V 4&@ Integration by parts? (Gauss's theorem applied to ab):

Weak form? Lebved ! (0
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Motivation: Bilinear Forms and Functionals ()
1Y

fv.

This is the weak form of the strong-form problem. The task is to find a
u € V that satisfies this for all test functions v € V.

Recast this in terms of bilinear forms and functionals:

o\(u\)u) ::3 fv)




Dual Spaces and Functionals ° Plxeyh (x)ff[q)

Bounded Linear Functional

Let (V,||-||) be a Banach space. A linear functional is a linear function
g : V — R. Itis bounded (& continuous) if there exists a constant C so

that |g(v)| < C|v]| forall v € V. i (o) + p L‘M < el
Dual Space

Let (V, ||||) be a Banach space. Then the dual space V' is the space of
bounded linear functionals on V.

Dual Space is Banach (cf. e.g. Tréves 1967)

V' is a Banach space with the dual norm
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Functionals in the Model Problem quJJ:S/U7<{/V)Ll :(veHa

Is g from the model problem a bounded functional? (In what space?)
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That bound felt loose and wasteful. Can we do better?
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Riesz Representation Theorem (1/3)
Let V be a Hilbert space with inner product (-, -).

Theorem (Riesz)

“["',v)‘ (\l,v)m

Let g be a bounded linear functional on V, i.e. g € VV'. Then there exists

a unique u € V so that g(v) = (u,v) forallv e V.
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Riesz Representation Theorem: Proof (2/3)

Have w € N(g)* \ {0}, @ = g(w) #0, and z := v — (g(v)/a)w L w.
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Riesz Representation Theorem: Proof (3/3)

Uniqueness of u?
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Back to the Model Problem

a(u,v) = (Vu,Vv), 2+ (u,v) , =Lh V>Mr
glv) = (f, V>L
<V\[V3 [=a(u, V) = g(v)

Have we learned anything about the solvability of this problem?
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Poisson
Let Q C R" open, bounded, f € H_l(Q).
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This is called the Poisson problem (with Dirichlet BCs).

Weak form?
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Ellipticity
4y J=U)

Let V be Hilbert space.

V-Ellipticity

A bilinear form a(-,-) : V x V — R is called coercive if there exists a
constant ¢g > 0 so that

Gl < afwy) o MueV

and a is called continuous if there exists a constant ¢; > 0 so that

(q(“.u)/ < ¢l )A/)r\/

If ais both coercive and continuous on V/, then a is said to be V-elliptic.



Lax-Milgram Theorem

ol
Let V be Hilbert space with inner product (-, ). pooidobl

Lax-Milgram, Symmetric Case

Let a be a V-elliptic bilinear form that is also symmetric, and let g be a
bounded linear functional on V.
Then there exists a unique u € V so that a(u,v) = g(v) forall v € V.
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Back to Poisson

Can we declare victory for Poisson?

|a(ws) = \Swchvkrm) 9l 10, < Th
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Can this inequality hold in general, without further assumptions?
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