Announcements - HW doudline - Apr. 15 (northed) - proj. deadline - April 22 - dssignmale for rest of semester - Tiredrake install

Poisson

Let $\Omega \subset \mathbb{R}^n$ open, bounded, $f \in H^{-1}(\Omega)$.

This is called the Poisson problem (with Dirichlet BCs).

Weak form?

$$\int \nabla u \cdot \nabla v \, dx = \int f(x) v(x) \, dx \quad \forall v \in H'_0$$

$$\int u \in H'_0$$

$$g(v)$$

Ellipticity

Let V be Hilbert space.

V-Ellipticity

A bilinear form $a(\cdot, \cdot): V \times V \to \mathbb{R}$ is called coercive if there exists a constant $c_0 > 0$ so that

$$c_{o} ||u||^{2} \leq a(u, u)$$

and a is called continuous if there exists a constant $c_1 > 0$ so that

$$|a(w_v)| \in c_r \|w\|_v \|v\|_v$$

If a is both coercive and continuous on V, then a is said to be V-elliptic.

Lax-Milgram Theorem

Let V be Hilbert space with inner product $\langle \cdot, \cdot \rangle$. $\neg \neg \alpha (v_1 v_2) = \alpha (v_1 v_2)$

Lax-Milgram, Symmetric Case

Let a be a V-elliptic bilinear form that is also symmetric, and let g be a bounded linear functional on V.

Then there exists a unique $u \in V$ so that a(u, v) = g(v) for all $v \in V$.

Back to Poisson

Can we declare victory for Poisson?

$$\left| \left(\sum_{k} \mathbb{Q}_{k} \cdot \mathbb{Q}_{k} d \times \right) = \left| \langle \mathbb{Q}_{k} | \mathbb{Q}_{k} \rangle \right|_{L^{2}} \leq \left| |\mathbb{Q}_{k} | \|_{L^{2}} \|\mathbb{Q}_{k} \|_{L^{2}} \leq \left| |\mathbb{Q}_{k} | \|_{L^{2}} \left| |\mathbb{Q}_{k} \|_{L^{2}} \right|_{L^{2}} \leq \left| |\mathbb{Q}_{k} | \|_{L^{2}} \leq \left| |\mathbb{Q}_{k} \|_{L^{2}} \right|_{L^{2}} \leq \left| |\mathbb{Q}_{k} \|_{L^{2}} \leq \left| |\mathbb{Q}_{k} \|_{L^{2}} \right|_{L^{2}}$$

Can this inequality hold in general, without further assumptions?

Constant violates that

(JUGH'

Poincaré-Friedrichs Inequality (1/3)

Theorem (Poincaré-Friedrichs Inequality)

Suppose $\Omega \subset \mathbb{R}^n$ is bounded and $u \in H_0^1(\Omega)$. Then there exists a constant C > 0 such that

$$\begin{split} & \left(u^2 \overrightarrow{x} \right) = \partial_{x_1} (u^2 x_1) + \cdots + \partial_{x_n} (u^2 x_n) \\ &= u^2 + 2 (u \partial_{x_n} u) + \cdots + u^2 + 2 (u \partial_{x_n} u) \\ &= h u^2 + 2 u (\nabla u \cdot x) \\ & u^2 = \frac{1}{N} \cdot \nabla \cdot (u^2 x) - \frac{2}{N} u (\nabla u \cdot x) \end{split}$$

Poincaré-Friedrichs Inequality (2/3)
Prove the result in
$$C_0^{\infty}(\Omega)$$
. $\|u\|_{\mathcal{U}} \leq \|\nabla h\|_{\mathcal{U}}$
 $\|u\|_{\mathcal{U}}^2 - \int_{\mathcal{U}}^{2} = \int_{\mathcal{U}} \frac{1}{N} \cdot \nabla \cdot (u^2 x) - \frac{2}{n} u(\nabla h \cdot x) dx$
 $= \int_{\mathcal{U}} \int_{\mathcal{U}} \frac{1}{n} \int_{\mathcal{U}} \frac{1}{n} \cdot \nabla \cdot (u^2 x) - \frac{2}{n} u(\nabla h \cdot x) dx$
 $= \int_{\mathcal{U}} \int_{\mathcal{U}} \frac{1}{n} \int_{\mathcal{U}} \frac{1}{n} \int_{\mathcal{U}} \int_{\mathcal{U}} \int_{\mathcal{U}} u \nabla h dx \leq \frac{2}{n} \max_{x \in \mathcal{U}} |x| \|u\|_{\mathcal{U}} \cdot ||\nabla h||_{\mathcal{U}}$
 $\Rightarrow \|u\|_{\mathcal{U}} \leq C \cdot \|\nabla h\|_{\mathcal{U}}$

Poincaré-Friedrichs Inequality (3/3)

Prove the result in $H_0^1(\Omega)$.

Back to Poisson, Again

Show that the Poisson bilinear form is coercive.

$$\leq A(n_{\mu})$$

$$\frac{1}{C+1} \|u\|_{H^1}^2 = \frac{1}{C+1} \left(\frac{\|u\|_{\mathcal{B}}^2}{C+1} + \|\nabla^{\prime\prime} u\|_{\mathcal{D}}^2 \right) \leq \|\nabla^{\prime\prime} u\|_{\mathcal{D}}^2 = a(u, u).$$

Draw a conclusion on Poisson:

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems tl;dr: Functional Analysis Back to Elliptic PDEs Galerkin Approximation Finite Elements: A 1D Cartoon Finite Elements in 2D Non-symmetric Bilinear Forms Mixed Finite Elements

Discontinuous Galerkin Methods for Hypberbolic Problems

A Glimpse of Integral Equation Methods for Elliptic Problems

Ritz-Galerkin

Some key goals for this section:

How do we use the weak form to compute an approximate solution?

h=0 11-41 = h 1.~1

► What can we know about the accuracy of the approximate solution? Can we pick one underlying principle for the construction of the approximation?

$$a(u_{1}v) = g(v) \quad v \in V \quad V \subseteq H$$

$$(hoose a finile dim subspace V_{L} \in V, \quad \forall ind a solution U_{L} \in V_{L}$$

$$a(u_{1}, v_{1}) = g(v_{L}) \quad v_{L} \in V_{L}$$

$$U_{L} \quad is called the Rite - Galarkin approximation.$$

Galerkin Orthogonality

$$a(u, v) = g(v) \quad \text{for all } v \in V, a(u_h, v_h) = g(v_h) \quad \text{for all } v_h \in V_h.$$
Observations?
$$a(u_1 v_h) = g(v_h) \quad v_h \in V_h$$

$$\Rightarrow a(u_1 v_h) = 0$$

$$approx evrov \quad M \quad Galadin \quad \text{orthogonality}^h$$

Céa's Lemma

Let $V \subset H$ be a closed subspace of a Hilbert space H.

Céa's Lemma

Let $a(\cdot, \cdot)$ be a coercive and continuous bilinear form on V. In addition, for a bounded linear functional g on V, let $u \in V$ satisfy

$$\longrightarrow$$
 $a(u,v) = g(v)$ for all $v \in V$.

Consider the finite-dimensional subspace $V_h \subset V$ and $u_h \in V_h$ that satisfies

$$ightarrow$$
 $a(u_h,v_h)=g(v_h)$ for all $v_h\in V_h$.

Then

$$\| u - u_h \|_V \leq \frac{c_i}{c_0} \inf_{v_k \in V_h} \| u - v_h \|$$

Céa's Lemma: Proof

Recall Galerkin orthgonality: $a(u_h - u, v_h) = 0$ for all $v_h \in V_h$. Show the result.

$$C_{n} \| u - u_{n} \|_{V}^{2} \leq a \left(u - u_{n} | u - u_{n} \right) \qquad (coerciv.) \qquad (let v_{n} eV_{n})$$

$$= a \left(u - u_{n} | u - V_{n} \right) + a \left(u - u_{n} | u - u_{n} \right)$$

$$= a \left(u - u_{n} | u - v_{n} \right) \leq C_{n} \| u - u_{n} \|_{V} \quad \| u - V_{n} \|_{V}.$$

Elliptic Regularity

Definition (H^s Regularity)

Let $m \ge 1$, $H_0^m(\Omega) \subseteq V \subseteq H^m(\Omega)$ and $a(\cdot, \cdot)$ a V-elliptic bilinear form. The bilinear form $a(u, v) = \langle f, v \rangle$ for all $v \in V$ is called H^s regular, if for every $f \in H^{s-2m}$ there exists a solution $u \in H^s(\Omega)$ and we have with a constant $C(\Omega, a, s)$,

 $\frac{\|\|\|_{H^s} < (\langle \mathcal{D}, s, a \rangle \|\|_{H^{s-2m}})}{M^2} \xrightarrow{\mathcal{D}} Gilberg / Traching v.$

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H_0^1 -elliptic bilinear form with sufficiently smooth coefficient functions.

- IF & convex, then the Dirichlef problem is the regular - (ds=2. If DR is &, then the P. Dirichelt prob. is the req.

Elliptic Regularity: Counterexamples

Are the conditions on the boundary essential for elliptic regularity?

Are there any particular concerns for mixed boundary conditions?

Estimating the Error in the Energy Norm

Come up with an idea of a bound on $||u - u_h||_{H^1}$.

$$\begin{aligned} \|u - u_{h}\|_{H^{1}} &\leq C \inf_{V \in V_{h}} \|u - v_{h}\|_{H^{2}} \leq C \|u - \overline{J}_{h} u \cdot \|_{H^{2}} \\ &\leq C' h \|u\|_{H^{2}} \leq C' h \cdot C(\mathcal{D}_{l} \alpha_{l}) \|f\|_{L^{2}} \\ &\geq z \end{aligned}$$

What's still to do?