Today	Annog	
$-\Delta u = f$	$-\Delta u = 0$	
$- a [u, v] = f [u]$	$\forall u \in V$	$- 0$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$- 0$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$- 0$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$- 0$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$- 0$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$- 0$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$- 0$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$\forall u \in V$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$\forall u \in V$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$\forall u \in V$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$\forall u \in V$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	$\forall u \in V$
$\Delta u [u, v] = f[u]$	$\forall u \in V$	

Poisson

Let $\Omega \subset \mathbb{R}^n$ open, bounded, $f \in H^{-1}(\Omega)$.

$$
\begin{array}{c}\n\bigcirc \mathcal{D} \mathcal{L} \rightarrow \beta \\
\downarrow \mathcal{L} \rightarrow \mathcal{D} \quad \text{or} \quad \mathcal{D} \mathcal{L}\n\end{array}
$$

This is called the Poisson problem (with Dirichlet BCs).

Weak form?

$$
\frac{\int_{\mathcal{R}}\nabla u \cdot \nabla v}{a(u,v)} dx = \frac{\int f(x) v(x) dx}{u \in H_{o}^{1}}
$$

Ellipticity

Let V be Hilbert space.

V-Ellipticity

A bilinear form $a(\cdot, \cdot): V \times V \to \mathbb{R}$ is called coercive if there exists a constant $c_0 > 0$ so that

$$
\subset_{o} \left| \|\psi\|_{V}^{2} \right| \leq \alpha \left| \psi_{\mu} \psi \right|
$$

and a is called continuous if there exists a constant $c_1 > 0$ so that

$$
|a(w_{1}v)|
$$
 \leq $C_{1}^{||w||_{V}^{||}||_{V}$

If a is both coercive and continuous on V , then a is said to be V -elliptic.

Lax-Milgram Theorem

Let V be Hilbert space with inner product $\langle \cdot, \cdot \rangle$. $\mathcal{A}(\mathsf{v}, \mathsf{v}) = \mathsf{a}(\mathsf{v}, \mathsf{w})$

Lax-Milgram, Symmetric Case

Let a be a V-elliptic bilinear form that is also symmetric, and let g be a bounded linear functional on V.

Then there exists a unique $u \in V$ so that $a(u, v) = g(v)$ for all $v \in V$.

Back to Poisson

Can we declare victory for Poisson?

$$
\begin{aligned}\n\left| \int_{\mathcal{L}} \mathbf{V} \cdot \nabla v \, dx \right| &= |\langle \nabla u | \nabla v \rangle_{\mathcal{L}} | \le ||\nabla u||_{\mathcal{L}} ||\nabla u||_{2} \le ||u||_{\mathcal{H}^{\perp}} ||u||_{\mathcal{H}^{\perp}} \\
&\quad \int \nabla u \cdot \nabla u \, dx \quad \geq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \mathcal{L} \leq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \mathcal{L} \leq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \mathcal{L} \leq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \mathcal{L} \leq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \mathcal{L} \leq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \mathcal{L} \leq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \mathcal{L} \leq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \mathcal{L} \leq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \mathcal{L} \leq \mathcal{L}_{\mathfrak{d}} \left(\int_{\mathcal{L}} \nabla u \cdot \nabla u \, dx \right) \\
&\quad \text{for all } \
$$

Can this inequality hold in general, without further assumptions?

Constant violates that

 $L_{\geq N}$ GH's

Poincaré-Friedrichs Inequality (1/3)

Theorem (Poincaré-Friedrichs Inequality)

Suppose $\Omega \subset \mathbb{R}^n$ is bounded and $u \in H^1_0(\Omega)$. Then there exists a constant $C > 0$ such that

 $\frac{2}{\sqrt{x}}$ $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.

$$
\nabla \cdot (u^{2} \vec{x}) = \partial_{x_{1}}(u^{2}x) + \cdots \partial_{x_{n}}(u^{2}x_{n})
$$

\n
$$
= u^{2} + 2(u \partial_{x_{1}}u) + \cdots + u^{2} + 2(u \partial_{x_{n}}u)
$$

\n
$$
= hu^{2} + 2u (\nabla u \cdot x)
$$

\n
$$
u^{2} = \frac{1}{n} \cdot \nabla \cdot (u^{2}x) - \frac{2}{n} u (\nabla u \cdot x)
$$

Pointor the result in
$$
C_0^{\infty}(\Omega)
$$
.

\nProve the result in $C_0^{\infty}(\Omega)$.

\nProve the result in $C_0^{\infty}(\Omega)$.

\n
$$
\frac{\|u\|_{L^2}^2 - \int_{\Omega} u^2 = \int_{\Omega} \frac{1}{v} \cdot \nabla \cdot (u^2 \times) - \frac{2}{v} \cdot u(\nabla u \times) du}{\int_{\Omega} \frac{u}{\Omega} \cdot (u^2 \times) du} = \frac{1}{2} \int_{\Omega} \frac{1}{\int_{\Omega} \frac{u}{\Omega} \cdot (u^2 \times) du}{\int_{\Omega} \frac{u}{\Omega} \cdot u} \cdot \frac{2}{\int_{\Omega} \frac{u}{\Omega} \cdot (u \cdot \nabla u) du} \cdot \frac{2}{\int_{\Omega} \frac{u}{\Omega} \cdot (u \cdot \nabla u)} du
$$
\n
$$
\leq \frac{2}{v} \cdot \lim_{x \to \infty} \frac{u}{\Omega} \cdot \lim_{x \to \infty} |u|_{L^2}
$$
\n
$$
\Rightarrow \left\| u \right\|_{2} \leq C \cdot \|\nabla u\|_{L^2}
$$

Poincaré-Friedrichs Inequality (3/3)

Prove the result in $H_0^1(\Omega)$.

Let
$$
u \in H_0^1(\Omega)
$$
. $(u_k) \subset L_0^{\infty}(\Omega)$ so that $||u_k - u||_{H_1} \to \sigma$.
Then the inequality holds for each u_k .

By continuity, the inequility also holds for a.

Back to Poisson, Again

Show that the Poisson bilinear form is coercive.

$$
\leq \zeta\bigl(\mathsf{v}_{\mathsf{p}\mathsf{q}}\bigr)
$$

$$
\frac{1}{(2\epsilon)^{n}}\left\|u\right\|_{H^{1}}^{L} \leq \frac{1}{(2\epsilon)^{n}}\left(\frac{\left\|u\right\|_{L^{2}}^{2}}{\epsilon^{n}} + \left\|\nabla^{n}u\right\|_{L^{2}}^{L}\right) \leq \left\|\nabla^{n}u\right\|_{L^{2}}^{2} \geq a\left[u\right]_{L^{2}}.
$$

Draw a conclusion on Poisson:

Because of covering and continuity, Poisson has a unique solution in
$$
H_0(0)
$$

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems tl;dr: Functional Analysis Back to Elliptic PDEs Galerkin Approximation Finite Elements: A 1D Cartoon Finite Elements in 2D Non-symmetric Bilinear Forms Mixed Finite Elements

Discontinuous Galerkin Methods for Hypberbolic Problems

A Glimpse of Integral Equation Methods for Elliptic Problems

Ritz-Galerkin

Some key goals for this section:

▶ How do we use the weak form to compute an approximate solution?

 $h \gg 0$
 $\|u - u_k\| \leq h^2 \| \cdot \|$

� What can we know about the accuracy of the approximate solution? Can we pick one underlying principle for the construction of the approximation? 7 Hilbert

$$
a(n_1v) = g(v) \quad \text{is } V \subseteq N'
$$
\n
$$
(h\cos e \quad a \text{ finite-dim subspace } V_h \in V \subseteq W'
$$
\n
$$
a(n_1, v_h) = g(v_h) \quad v_h \in V_h
$$
\n
$$
u_h \text{ is called the Rih-Galerkin approximation.}
$$

Galerkin Orthogonality

$$
a(u, v) = g(v) \quad \text{for all } v \in V, a(u_h, v_h) = g(v_h) \quad \text{for all } v_h \in V_h.
$$
\nObservations?

\n
$$
a\left(u, v_h\right) = g\left(v_h\right) \quad v_h \in V_h
$$
\n
$$
\Rightarrow a\left(\underbrace{u \sim u_h, v_h}_{\text{approx error}}\right) = O
$$
\n
$$
a p \rho \text{ as every}
$$
\n
$$
\frac{a}{2} \left(\frac{u}{2} \left(\frac{u}{2} + \frac{u}{2} + \frac{u}{2}\right) - \frac{u}{2} \left(\frac{u}{2} + \frac{u}{2} + \frac{
$$

Céa's Lemma

Let $V \subset H$ be a closed subspace of a Hilbert space H.

Céa's Lemma

Let $a(\cdot, \cdot)$ be a coercive and continuous bilinear form on V. In addition, for a bounded linear functional g on V, let $u \in V$ satisfy

 $\Rightarrow a(u, v) = g(v)$ for all $v \in V$.

Consider the finite-dimensional subspace $V_h \subset V$ and $u_h \in V_h$ that satisfies

$$
\qquad \qquad \mathsf{a}(u_h, v_h) = g(v_h) \qquad \text{for all } v_h \in V_h.
$$

Then

$$
\|\mathbf{u} - \mathbf{w}_h\|_V \leq \frac{c_1}{c_0} \inf_{\mathbf{v}_k \in V_h} \|\mathbf{u} - \mathbf{v}_h\|
$$

Céa's Lemma: Proof

Recall Galerkin orthgonality: $a(u_h - u, v_h) = 0$ for all $v_h \in V_h$. Show the result.

$$
c_{n}||u-u_{k}||_{V}^{2} \leq a(n-n_{n_{1}}n-n_{k}) \qquad (convi)
$$
\n
$$
= a(n-n_{n_{1}}u-v_{n}) + a(n-n_{n_{1}}n_{n_{1}}n_{n_{1}})
$$
\n
$$
= a(n-n_{n_{1}}u-v_{n}) \leq c_{n} \frac{||u-v_{n}||_{V}}{||u-v_{k}||_{V}}
$$

Elliptic Regularity

$$
\sum_{k=1}^{n} |k_k| \leq \sqrt{2} \sqrt{2}
$$

$$
S^z \subset
$$

Definition (H^s Regularity)

Let $m \geq 1$, $H_0^m(\Omega) \subseteq V \subseteq H^m(\Omega)$ and $a(\cdot, \cdot)$ a V-elliptic bilinear form. The bilinear form $a(u, v) = \langle f, v \rangle$ for all $v \in V$ is called $H^{\frac{1}{2}}$ regular, if for every $f \in H^{s-2m}$ there exists a solution $u \in H^s(\Omega)$ and we have with a constant $C(\Omega, a, s)$, $\qquad \qquad -\frac{1}{a^n} \leq \beta$ constant $C(\Omega, a, s)$,

 $\|f\|_{\mathcal{H}^{s}} \leq C \left(\mathcal{R}_{s} \mathcal{S}_{s} \right) \quad \|f\|_{\mathcal{H}^{s-2m}}$ Silbary Anding

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H_0^1 -elliptic bilinear form with sufficiently smooth coefficient functions.

> - If 2 convex, then the Dirichles problem is He regular - Let s>2. If DR is E, then the P. Oirichall prob. is f1s reg.

Elliptic Regularity: Counterexamples

Are the conditions on the boundary essential for elliptic regularity?

Are there any particular concerns for mixed boundary conditions?

Estimating the Error in the Energy Norm

Come up with an idea of a bound on $||u - u_h||_{H^1}$.

$$
\|u-u_{\lambda}\|_{H^{1}} \leq C \int_{V\subset V_{h}} \|u-v_{\lambda}\|_{H^{1}} \leq C \|u-\overline{J}_{h}u.\overline{\eta}_{H^{1}}
$$

$$
\leq C' h \|u\|_{H^{2}} \leq C' h \cdot C(\overline{J}_{\alpha\beta}) \|f\|_{L^{2}}
$$

What's still to do?