$\sqrt{0}$ $-L^2$ estimate G Aubin - Nitsche wellight regularly - FEM assumbly 10 $-TEM2D$ - FEM oppreximation $-Ml\times eA$ FEM $\|\mathbf{u} - \mathbf{v}_h\|_{H^1} \leq \mathbf{v}_h \leq \|\mathbf{v}_h - \mathbf{v}_h\|_{H_1} \leq \|\mathbf{v}_h - \mathbf{v}_h\mathbf{v}\|_{H_1} \leq \frac{2}{\varepsilon}.$

Annonncements $-HW4$ due $-$ HWS ont soon - Project du in a week

Céa's Lemma

Let $V \subset H$ be a closed subspace of a Hilbert space H.

Céa's Lemma

Let $a(\cdot, \cdot)$ be a coercive and continuous bilinear form on V. In addition, for a bounded linear functional g on V, let $u \in V$ satisfy

$$
a(u,v)=g(v) \qquad \text{for all } v\in V.
$$

Consider the finite-dimensional subspace $V_h \subset V$ and $u_h \in V_h$ that satisfies

$$
a(u_h, v_h) = g(v_h) \quad \text{for all } v_h \in V_h.
$$

Then

$$
||u - u_{h}|| \leq \frac{c}{c_{0}} \cdot \frac{1}{v_{h}^{\prime}c_{h}^{\prime}}||_{h} - V_{h}||_{h}
$$

Elliptic Regularity

Definition $(H^s$ Regularity)

Let $m \geq 1$, $H_0^m(\Omega) \subseteq V \subseteq H^m(\Omega)$ and $a(\cdot, \cdot)$ a V-elliptic bilinear form. The bilinear form $a(u, v) = \langle f, v \rangle$ for all $v \in V$ is called H^s regular, if for every $f \in H^{s-2m}$ there exists a solution $u \in H^s(\Omega)$ and we have with a constant $C(\Omega, a, s)$,

$$
\|\eta\|_{\mathcal{H}^{s}}\leq C(\mathfrak{A},\mathfrak{a},\mathfrak{b})\|\mathfrak{f}\|_{\mathcal{H}^{s-2s}}
$$

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H_0^1 -elliptic bilinear form with sufficiently smooth coefficient functions.

Elliptic Regularity: Counterexamples

Are the conditions on the boundary essential for elliptic regularity?

Are there any particular concerns for mixed boundary conditions?

Estimating the Error in the Energy Norm\n
$$
\begin{array}{r}\n\text{Come up with an idea of a bound on } \|u - u_h\|_{\text{HT}} \\
\text{Cone up with an idea of a bound on } \|u - u_h\|_{\text{HT}}\n\end{array}
$$
\n
$$
\begin{array}{r}\n\text{Come up with an idea of a bound on } \|u - u_h\|_{\text{HT}} \\
\text{Cone up with an idea of a bound on } \|u - u_h\|_{\text{HT}}\n\end{array}
$$
\n
$$
\begin{array}{r}\n\text{Come up with an idea of a bound on } \|u - u_h\|_{\text{HT}} \\
\text{Cone up with an idea of a bound on } \|u - u_h\|_{\text{HT}}\n\end{array}
$$
\n
$$
\begin{array}{r}\n\text{Come up with an idea of a bound on } \|u - u_h\|_{\text{HT}}\n\end{array}
$$
\n
$$
\begin{array}{r}\n\text{Come up with an idea of a bound on } \|u - u_h\|_{\text{HT}}\n\end{array}
$$
\n
$$
\begin{array}{r}\n\text{Come up with an idea of a bound on } \|u - u_h\|_{\text{HT}}\n\end{array}
$$

÷.

What's still to do?

$$
-V_{h}?
$$

\n
$$
-L_{h}?
$$

\n
$$
-int_{P} .
$$

\n
$$
-L^{2} .
$$

$1²$ Estimates

Let H be a Hilbert space with the norm �·�^H and the inner product �·, ·�. (Think: $H = L^2$, $V = H^1$.)

Theorem (Aubin-Nitsche)

Let $V \subseteq H$ be a subspace that becomes a Hilbert space under the norm $\Vert \cdot \Vert$, Let the embedding $V \to H$ be continuous. Then we have for the finite element solution $u \in V_h \subset V$: $^{\prime\prime}$ as $\mu^{\prime\prime}$

$$
||u-u||_{H} \leq c, ||u-u_{h}||_{V} \cdot \overbrace{\int_{g \in H} \left[\frac{1}{l(g_{\mu}^{h}v_{h} \in V_{h}} \right]^{u} q^{-\nu_{h}^{h}}v_{h}^{m}}^{u}||_{V} \qquad \qquad \qquad
$$

if with every $g \in H$ we associate the unique (weak) solution ϕ_g of the equation (also called the dual problem) equation (also called the dual problem)

$$
O((\omega_1 \varphi_3) = \langle \varphi_1, \omega \rangle \quad \text{for all } \omega \in V
$$

 $\int_{0}^{3} a(n,v) = \int_{0}^{3} a(v,v)dv = \int_{0}^{3} dv$
 $\int_{0}^{3} a(v,v)dv = \int_{0}^{3} v \cdot v dv = \int_{0}^{3} v \cdot v dv$

 $\int M$

 L^2 Estimates using Aubin-Nitsche \leq C h ll \mathcal{Y} HH $\begin{bmatrix} 1 \end{bmatrix}$ $||u - u_h||_H \leq c_1 ||u - u_h||_V \sup_{g \in H}$ $\frac{1}{\|\mathcal{g}\|_H}$ inf
 $\frac{1}{\mathcal{G}\|\mathcal{G}\|_H}$ $\inf_{v_h \in V_h} \|\varphi_g - v_h\|_V$

If $u \in H_0^1(\Omega)$, what do we get from Aubin-Nitsche?

$$
\|\mathbf{w} \cdot \mathbf{w}\|_{\mathcal{V}^{\perp}} \leq C \cdot \mathbf{w} \cdot \|\mathbf{w} \cdot \mathbf{w}\|_{\mathcal{H}^1}
$$

1 ,

So does Aubin-Nitsche give us an L^2 estimate?

$$
\|\mathbf{u} - \mathbf{u}_h\|_{C^2} \leq C \cdot \mathbf{h} \cdot \mathbf{h} \cdot \|\mathbf{f}\|_{C^2}
$$

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

tl;dr: Functional Analysis Back to Elliptic PDEs Galerkin Approximation Finite Elements: A 1D Cartoon Finite Elements in 2D Non-symmetric Bilinear Forms Mixed Finite Elements

Discontinuous Galerkin Methods for Hypberbolic Problems

A Glimpse of Integral Equation Methods for Elliptic Problems

Finite Elements in 1D: Discrete Form

$$
\Omega := [\alpha, \beta].
$$
 Look for $u \in H^1_{\mathcal{O}}(\Omega)$, so that $a(u, \varphi) = \langle f, \varphi \rangle$ for all $\varphi \in H^1_{\mathcal{O}}(\Omega)$. Choose $V_h = \text{span}\{\psi_1, \dots, \psi_n\}$ and expand $u_h = \sum_{i=1}^n u^i_h \psi_i \in V_h$. Find the discrete system.

 $-u^* = \rho$

$$
a\left(\sum_{i=1}^{n} u_{h}^{i} \psi_{i+1} \varphi\right) = (\varphi_{1} \varphi) \qquad \varphi \in V_{h}
$$
\n
$$
a\left(\sum_{i=1}^{n} u_{h}^{i} \psi_{i+1} \psi_{j}\right) = (\varphi_{1} \psi_{j}) \qquad j=1...n
$$
\n
$$
= \sum_{i=1}^{n} u_{h}^{i} a\left(\psi_{i+1} \psi_{j}\right) = (\varphi_{1} \psi_{j}) \qquad j=1...n
$$

Grids and Hats

