- P 6

Annonicements

- HWS NOW due May 6 S PI, P3 Fixed

- Extra credit?

Ax=6 PAx=PL y=Pxx 5 15 52

Sobolev Seminorms

Definition ((k, p)-Sobolev Seminorm)

The Sobolev seminorm is given by

Conditions on the Mesh

Let $\boldsymbol{\Omega}$ be a polygonal domain.

Admissibility (Braess, Def. II.5.1)

A partition (mesh) $\mathcal{T} = \{E_1, \ldots, E_M\}$ of Ω into triangular or quadrilateral elements is called admissible if

Give an example of a non-admissible partition.

hu, overlap, curvi

Mesh Resolution, Shape Regularity

h > h = sliver

Definition (Diameter)

Mesh Resolution

Definition (Shape Regularity (Braess, Def. II.5.1))

Cone Conditions

Definition (Lipschitz Domain)

A bounded domain $\Omega \subset \mathbb{R}^n$ is called a Lipschitz domain provided that...

Lipschitz domains satisfy a cone condition:

Theorem (Rellich Selection Theorem (Braess, Thm. II.1.9))

Let $m \ge 0$, let Ω be Lipschitz. Then the imbedding $H^{m+1}(\Omega) \to H^m(\Omega)$ is compact, i.e. any bounded sequence in the range of the imbedding has a convergent subsequence.

The Interpolation Operator

Theorem (Interpolation Operator (Braess, Lemma II.6.2))

Let $\Omega \subset \mathbb{R}^2$ be Lipschitz. Let $t \geq 2$, and z_1, z_2, \ldots, z_s are s := t(t+1)/2prescribed points in $\overline{\Omega}$ such that the interpolation operator $I : H^t \to \mathbb{P}^{t-1}$ is well-defined. Then there exists a constant c so that for $u \in H^t(\Omega)$

Theorem (Approx. for Congruent \triangle (Braess, Remark II.6.5))

Let $E_h := h\hat{E}$, i.e. a scaled version of a reference triangle, with $h \le 1$. Then, for $0 \le m \le t$, there exists a C so that

$$\|u - Tu\|_{H^m(E_n)} \leq C h^{k-m} \|u\|_{H^k}$$

Approximation for Congruent Triangles: Proof

$$f_{n} = h\hat{f}_{e} \qquad h \leq |$$

$$\Rightarrow ||u - lu||_{H^{m}(E_{h})} \leq Ch^{t-m} |u|_{H^{t}(E_{h})} \quad (0 \leq m \leq t)$$

$$(e^{f} n \in H_{e}(E_{n}), \quad Define \ v \in H^{e}(E) \quad b_{y} \quad v(y) = n(hy),$$

$$D_{u}^{d} v = h^{d} D_{v}^{d} n, \quad (|\alpha| \leq e)$$

$$|v|_{H^{e}(E)}^{2} = \sum_{|u| = e} \int_{E} (D_{u}^{u}v)^{2} dx - \sum_{|u| = e} \int_{E_{h}} (D_{v}^{u}v)^{2} h^{2e,2} = |u|_{H^{e}}^{2e,2e} h^{2e,2e}$$

$$||n||_{H^{n}}^{2} = \sum_{l \leq n} |u|_{H^{e}}^{l} = \sum_{g \leq n} h^{-1\ell+2} |v|_{H^{e}} \leq C^{l} h^{-2m+2} ||v||_{H^{h}}^{2}.$$

$$||u-In||_{H^{m}} \leq C^{l} h^{-m+1} ||v-Iv||_{H^{m}} \leq C^{l} h^{-m-1} ||v-Iv||_{H^{e}}.$$

H^m Polynomial Approximation on Meshes

Definition (Broken Norm)

Given a partition $\mathcal{T}_h = \{E_i\}_{i=1}^M$ and a function u such that $u \in H^m(E_i)$,

$$\| u \|_{H^m, L} := \sqrt{\sum_{m=1}^{m} \| u \|_{H^m}^2(\mathcal{E}_m)}$$

Approximation Theorem (Braess, Theorem II.6.4)

Let $t \ge 2$, suppose \mathcal{T}_h is a shape-regular triangulation of Ω . Then there exists a constant c such that, for $0 \le m \le t$ and $u \in H^t(\Omega)$,

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

tl;dr: Functional Analysis Back to Elliptic PDEs Galerkin Approximation Finite Elements: A 1D Cartoon Finite Elements in 2D Approximation Theory in Sobolev Spaces Saddle Point Problems, Stokes, and Mixed FEM Non-symmetric Bilinear Forms

Discontinuous Galerkin Methods for Hyperbolic Problems

Weak Forms as Minimization Problems $\alpha(v,v) = g(v) - v \in V$ Let V be a linear space, and $a: V \times V \to \mathbb{R}$ a bilinear form, and $g \in V'$.

Theorem (Solutions of Weak Forms are Quadratic Form Minimizers)

If a is SPD, then

$$\int (v) = \frac{1}{2} a(v_1 v) - g(v)$$

attains its minimum over V at u iff a(u,v) = g(v) for all $v \in V$. Ages

$$\begin{aligned} y_{v} \in V \quad t \in \mathbb{R} \\ &= \frac{1}{2}a(u + t_{v}, u + t_{v}) - y(u + t_{v}) \\ &= \frac{1}{2}a(u + t_{v}, u + t_{v}) - y(u) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(u + t_{v}, u + t_{v}) - y(u) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(u + t_{v}, u + t_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(u + t_{v}, u + t_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(u + t_{v}, u + t_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(u + t_{v}, u + t_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(u + t_{v}, u + t_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(u + t_{v}) + \frac{1}{2}a(v_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(u + t_{v}, u + t_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(u + t_{v}) + \frac{1}{2}a(v_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(v_{v}) + \frac{1}{2}a(v_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(v_{v}) + \frac{1}{2}a(v_{v}) + \frac{1}{2}a(v_{v}) + \frac{1}{2}a(v_{v}) \\ &= \frac{1}{2}a(v_{v}) + \frac{1}{$$

Saddle Point Problems

X, M Hilbert spaces. $a: X \times X \to \mathbb{R}$ and $b: X \times M \to \mathbb{R}$ continuous bilinear forms, $f \in X'$, $g \in M'$. Minimize

$$J(u) = rac{1}{2}a(u,u) - \langle f,u
angle$$
 subject to

$$b(u,\mu) = \langle g,\mu \rangle \quad (\mu \in M).$$

Apply the method of the Lagrange multipliers.

 $\mathcal{L}(u, \lambda) = \operatorname{du} + \left(b(u, \lambda) - (y, \lambda) \right)$

Example: Saddle Point Problem in \mathbb{R}^2

$$f(x, y) = x^{2} + y^{2} \rightarrow \min!$$

$$g(x, y) = x + y = 2$$

$$\int e^{-\sum_{i=1}^{n} \lambda \sum_{j=0}^{n}}$$
Write down the Lagrangian.
$$\int e^{-\sum_{i=1}^{n} \lambda \sum_{j=0}^{n}}$$

$$\int e^{-\sum_{i=1}^{n} \lambda \sum_{j=0}^{n}}$$

Show that x = y = 1, $\lambda = -2$ is a saddle point.