$-D6$

Announcements

 $=$ E_{\times} tra gradit?

- FINS now due May 6
4 PI, P3 Fixed

 $A x = 6$ $\rho A \times - P b$ Z Ś rs ζ^2

Sobolev Seminorms

$$
\Rightarrow \quad \|u\|_{k,p} := \sqrt[p]{\sum_{|\alpha| \leq k} \|D^{\alpha}_{w}u\|_{p}^{p}}, \qquad \qquad \|u\|_{k,p}
$$

Definition ((k, p)-Sobolev Seminorm)

The Sobolev seminorm is given by

$$
|u|_{k\rho}=\sqrt[p-1]{\sum_{|\vec{w}|\sim k}||D^{\vec{w}}_{\omega}u||_p^p}
$$

Conditions on the Mesh

Let Ω be a polygonal domain.

Admissibility (Braess, Def. II.5.1) A partition (mesh $\left(\mathcal{T} = \big| \{E_1, \ldots, E_M\} \right)$ of Ω into triangular or quadrilateral elements is called admissible if $-\overline{\Omega}=\overline{U}\overline{\epsilon}_{n}$ Witche motheds $X = IFE_{i}\cap E_{j}$ is exactly and point, then that point meal > - If Ein Ei is novelthing point and it's then Ein Ej

Give an example of a non-admissible partition.

La overlop curvi

Mesh Resolution, Shape Regularity

Λ^+ \int_{0}^{∞} $\int_{0}^{t} \sqrt{a} t^{2}$ h

Definition (Diameter)

$$
d(E) = sup\{1 \times y1 : x, y6E\}
$$

Mesh Resolution

When cuggalemark has a d'ianchu d'msh 2h,
than we write
$$
U_h
$$
.

Definition (Shape Regularity (Braess, Def. II.5.1))

A family of partitions
$$
\{\mathcal{T}_h\}
$$
 is called shape regular if $\int_{h' \text{in} \text{Circ}}^{h' \text{in} \text{Circ}} \text{Circ} \text{$

Cone Conditions

$$
\mathcal{O}(\mathbf{r}^{\prime})
$$

Definition (Lipschitz Domain)

A bounded domain $\Omega \subset \mathbb{R}^n$ is called a Lipschitz domain provided that...

\n
$$
\frac{1}{100}
$$
 for every $n \in 0.0$, there exists a *n*-th term
\n 3.2.0 nbth is the graph of a Lip. function\n

Lipschitz domains satisfy a cone condition:

Theorem (Rellich Selection Theorem (Braess, Thm. II.1.9))

Let $m \geq 0$, let Ω be Lipschitz. Then the imbedding $H^{m+1}(\Omega) \to H^m(\Omega)$ is compact, i.e. any bounded sequence in the range of the imbedding has a convergent subsequence.

The Interpolation Operator

Theorem (Interpolation Operator (Braess, Lemma II.6.2))

Let $\Omega \subset \mathbb{R}^2$ be Lipschitz. Let $t \geq 2$, and z_1, z_2, \ldots, z_s are $s := t(t+1)/2$ prescribed points in $\overline{\Omega}$ such that the interpolation operator $I : H^t \to \mathbb{P}^{t-1}$ is well-defined. Then there exists a constant c so that for $u \in H_2^t(\Omega)$

$$
\|\mathbf{u}\mathbf{-}\mathbf{I}\mathbf{u}\|_{\mathcal{H}^{k}} \leq C \|\mathbf{u}\|_{\mathcal{H}^{0}}
$$

Theorem (Approx. for Congruent \triangle (Braess, Remark II.6.5))

Let $E_h := (h\hat{E}, \hat{j}e$. a scaled version of a reference triangle, with $h \leq 1$. Then, for $0 \le m \le t$, there exists a C so that

$$
\|\boldsymbol{u} - \mathcal{T}\boldsymbol{u}\|_{\mathcal{H}^m(\mathbf{E}_n)} \leq C \|\boldsymbol{h}^{k-m}\| \boldsymbol{u}\|_{\mathcal{H}^{\xi}}
$$

Approximation for Congruent Triangles: Proof
$$
h \leq |\xi|
$$

\n
$$
\frac{\epsilon_{k} = h^{\frac{2}{k}}}{\sqrt{2}} = \frac{||u - lu||_{H^m(E_h)} \leq Ch^{t-m} |u|_{H^t(E_h)} (0 \leq m \leq t)}{\sqrt{2}} = \frac{L}{h^d} \frac{1}{\sigma_v^2} w
$$
\n
$$
\frac{\sqrt{2}}{\sigma_v^2} v = \frac{h^d}{h^d} \frac{1}{\sigma_v^2} w
$$
\n
$$
\frac{1}{\sigma_v^2} \left(\frac{|x|}{\epsilon} \right) \left(\frac{|x|}{\epsilon} \right)
$$
\n
$$
\frac{1}{\sigma_v^2} \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\sqrt{2}} \left(\frac{1}{\epsilon} \right)^2 \left(\frac{1}{\epsilon} \right)^2 \left(\frac{1}{\epsilon} \right)^2
$$
\n
$$
\frac{1}{\sqrt{2}} \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\sqrt{2}} \left(\frac{1}{\epsilon} \right)^2 \left(\frac{1}{\epsilon} \right)^2 \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\sqrt{2}} \left(\frac{1}{\epsilon} \right)^2 \left(\frac{1}{\epsilon} \right)^2
$$
\n
$$
\frac{1}{\sqrt{2}} \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\sqrt{2}} \left(\frac{1}{\epsilon} \right)^2 \left(\frac{1}{\epsilon} \right)^2 \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\epsilon} \left(\frac{1}{\epsilon} \right)^2 \left(\frac{1}{\epsilon} \right)^2
$$
\n
$$
\frac{1}{\epsilon} \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\epsilon} \left(\frac{1}{\epsilon} \right)^2 \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\epsilon} \left(\frac{1}{\epsilon} \right)^2
$$
\n
$$
\frac{1}{\epsilon} \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\epsilon} \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\epsilon} \left(\frac{1}{\epsilon} \right)^2 = \frac{1}{\epsilon} \left(\frac{1}{
$$

H^m Polynomial Approximation on Meshes

Definition (Broken Norm)

Given a partition $\mathcal{T}_h = \{E_i\}_{i=1}^M$ and a function u such that $u \in H^m(E_i)$,

$$
\|u\|_{H^{m},L}:=\sqrt{\sum_{m=1}^{\infty}||u||^{2}}m(\epsilon_{m})
$$

Approximation Theorem (Braess, Theorem II.6.4)

Let $t \geq 2$, suppose \mathcal{T}_h is a shape-regular triangulation of Ω . Then there exists a constant c such that, for $0 \le m < t$ and $u \in H^t(\Omega)$.

$$
\|\boldsymbol{u}\cdot\boldsymbol{I}_{h}\boldsymbol{v}\|_{\boldsymbol{H}_{j}^{m},h}\leq c\|h^{t-m}\|h\|_{H^{t}}
$$

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

tl;dr: Functional Analysis Back to Elliptic PDEs Galerkin Approximation Finite Elements: A 1D Cartoon Finite Elements in 2D Approximation Theory in Sobolev Spaces Saddle Point Problems, Stokes, and Mixed FEM Non-symmetric Bilinear Forms

Discontinuous Galerkin Methods for Hyperbolic Problems

Weak Forms as Minimization Problems $a(u,v) = g(v)$ we V Let V be a linear space, and $a: V \times V \rightarrow \mathbb{R}$ a bilinear form, and $g \in V'.$

Theorem (Solutions of Weak Forms are Quadratic Form Minimizers)

If a is SPD, then

$$
\text{Var}(v) = \frac{1}{2} a(v_j v) - g(v)
$$

attains its minimum over V at u iff $a(u, v) = g(v)$ for all $v \in V$. $\mathbb{A}_{y \in S}$

$$
u_{y}v \in V \text{ teR}
$$
\n
$$
J(u+U) = \frac{1}{2}a(u+U_{y}u+U) - g(u+U)
$$
\n
$$
= J[u] + L [a(u_{y}v) - y w] + \frac{R}{2} a[v_{y}v]
$$
\nIf u satisfies $a(u_{y}v) = g[w] - g(u + iv) = J(u)$.
\nIf y has a min at u, $y \in V$ and $y = g(u + iv)$ has a min at $k = 0$ $f'(0) = 0$.

Saddle Point Problems

X, M Hilbert spaces. $a: X \times X \rightarrow \mathbb{R}$ and $b: X \times M \rightarrow \mathbb{R}$ continuous bilinear forms, $f \in X'$, $g \in M'$. Minimize

$$
J(u) = \frac{1}{2}a(u, u) - \langle f, u \rangle \qquad \text{subject to} \qquad \underline{b(u, \mu) = \langle g, \mu \rangle} \quad (\mu \in M).
$$

$$
b(u,\mu)=\langle g,\mu\rangle \quad (\mu\in M).
$$

Apply the method of the Lagrange multipliers.

 $\mathcal{L}(\mathbf{u}, \lambda) = \mathcal{J}|\mathbf{u}| + \left[\mathbf{b}(\mathbf{u}, \lambda) - (\mathbf{y}, \lambda)\right]$

Example: Saddle Point Problem in \mathbb{R}^2

$$
f(x,y) = x^2 + y^2 \rightarrow \min! \qquad \qquad \sqrt{2} \neq 0
$$
\nWrite down the Lagrangian.\n
$$
\mathcal{L}(x, y) = x + y = 2 \qquad \qquad \int_{0}^{1} -\sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2}
$$

Show that $x = y = 1$, $\lambda = -2$ is a saddle point.