


Example: Lagrange Multipliers in R2

f (x , y) = x2 + y2 → min!

g(x , y) = x + y = 2

Write down the Lagrangian.

Write down a necessary condition for a constrained minimum.



Saddle Point Problems
X , M Hilbert spaces. a : X × X → R and b : X ×M → R continuous
bilinear forms, f ∈ X �, g ∈ M �. Minimize

J(u) =
1
2
a(u, u)− �f , u� subject to b(u, µ) = �g , µ� (µ ∈ M).

Apply the method of the Lagrange multipliers.



Example: Saddle Point Problem in R2

f (x , y) = x2 + y2 → min!

g(x , y) = x + y = 2

Lagrangian: L(x , y ,λ) = f (x , y) + λg(x , y) = x2 + y2 + λ(x + y − 2).

Show that x = y = 1, λ = −2 is a saddle point.



Stokes Equation

Δu +∇p = −f (x ∈ Ω),

∇ · u = 0 (x ∈ Ω),

u = u0 (x ∈ ∂Ω).

What are the pieces?



Stokes: Properties

Δu +∇p = −f (x ∈ Ω),

∇ · u = 0 (x ∈ Ω),

u = u0 (x ∈ ∂Ω).

Can we choose any u0?

Does Stokes fully determine the pressure?



Stokes: Variational Formulation
Δu +∇p = −f , ∇ · u = 0 (x ∈ ∂Ω).

Choose some function spaces (for homogeneous u0 = 0).

Derive a weak form.



Solvability of Saddle Point Problems

The Stokes weak form is clearly in saddle-point form.
Do all saddle point problems have unique solutions?



The inf-sup Condition
a(u, v) + b(v ,λ) = �f , v� (v ∈ X ),

b(u, µ) = �g , µ� (µ ∈ M).

Theorem (Brezzi’s splitting theorem (Braess, III.4.3))

The saddle point problem has a unique solution if and only if
� The bilinear form a(·, ·) is V -elliptic, where

V = {u : b(u, µ) = 0for all µ ∈ M}, i.e. there exists c0 > 0 so that

� There exists a constant c2 > 0 so that (inf-sup or LBB condition):



inf-sup and Stokes

a(u, v) =

�

Ω
Ju : Jv , where A : B = tr(ABT ),

b(v , q) =

�

Ω
∇ · vq.

Find (u, p) ∈ X ×M so that

a(u, v) + b(v , p) = �f , v�L2 (v ∈ X ),

b(u, q) = 0 (q ∈ M).

Theorem (Existence and Uniqueness for Stokes (Braess, III.6.5))

There exists a unique solution of this system when f ∈ H−1(Ω)n.

(based on results due to Ladyšenskaya, Nečas)



Discretizations for Stokes

Demo: 2D Stokes Using Firedrake (P1-P1)

Give a heuristic reason why P1-P1 might not be great.

Demo: Bad Discretizations for 2D Stokes



Establishing a Discrete inf-sup Condition
Suppose b : X ×M → R satisfies inf-sup. Subspaces Xh ⊆ X , Mh ⊆ M.

Fortin’s Criterion ([Fortin 1977])

Suppose there exists a bounded projector Πh : X → Xh so that

If �Πh� ≤ c for some constant c independent of h, then b satisfies the
inf-sup-condition on Xh ×Mh.



H1-Boundedness of the L2-Projector
Assume H2-regularity and a uniform triangulations Th. (Not in general!)

H1-Boundedness of the L2-Projector (Braess Corollary II.7.8)

Let π0
h be the L2-projector onto a finite element space Vh ⊂ H1(Ω). Then,

for an h-independent constant c ,

Ingredients?



H1-Boundedness of the L2-Projector

Does H1 boundedness of the H1 projector hold?

How would this break down without the uniformity assumption?



Bubbles and the MINI Element
What is a bubble function?

Let B3 be the span of the bubble function and Th the triangulation.

Define the MINI variational space Xh ×Mh.

Computational impact of the bubble DOF?



The Bubble in Pictures

0
0.2

0.4
0.6

0.8
1 0 0.2 0.4 0.6 0.8 1

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

r+s<=1?r*s*(1-r-s):1/0



MINI Satisifies an inf-sup Condition (1/4)
MINI satisifes inf-sup (Braess Theorem III.7.2)

Assume Ω is convex or has a smooth boundary. Then the MINI variational
space satisfies an inf-sup condition for every variational form that itself
satisfies one.



MINI Satisifies an inf-sup Condition (2/4)
Create a projector onto the bubble space B3.

What does this bubble projector do?

Do we have an estimate for the bubble projector?



MINI Satisifies an inf-sup Condition (3/4)
Make an overall projector Πh onto Xh.

Show Fortin’s criterion for Πh.



MINI Satisifies an inf-sup Condition (4/4)

�
��π0

hv
��
H1 ≤ c1 �v�H1 for L2 projector π0

h : H1
0 → Mh.

�
��v − π0

hv
��
L2 ≤ c2h |v |H1 .

�
��π1

hv
��
L2 ≤ c3 �v�L2 .

Show H1-boundedness of Πh.



Demo

Demo: 2D Stokes Using Firedrake (MINI and Taylor-Hood)


