Voday - Stoles (cont, discrete)

<u>Announcements</u> (ICES) - HWS due tuday - Project Z due a week from today So Need extra fime due to conflict Or other issues? S Contact me early. - May do some work fowards a second project topic for up to \rightarrow 7% extra class credit. \int = should only take $\frac{1}{2}$ as much york (- reduce scope in a suilable manner
[- "critigae" should remain - please label which is full scale and which is "extra"
- will post to Piazza with these rules

Example: Lagrange Multipliers in \mathbb{R}^2

$$
\supset \text{Im}(\mathcal{L}) = \frac{1}{2} \cdot \mathsf{Im}(\mathcal{L}, \alpha) - \left(\text{Im}(\mathcal{L}, \alpha)\right)
$$

$$
\int f(x, y) = x^2 + y^2 \rightarrow \min!
$$

$$
g(x, y) = x + y = 2
$$

Write down the Lagrangian.

$$
\mathcal{L}(x_1y,x) = \int |x_1y| + \lambda y |x_1y|
$$

Write down a necessary condition for a constrained minimum.

$$
0 = \nabla x = \left(\nabla f(x)\right)
$$

Saddle Point Problems

X, M Hilbert spaces. $a: X \times X \to \mathbb{R}$ and $b: X \times M \to \mathbb{R}$ continuous bilinear forms, $f \in X'$, $g \in M'$. Minimize

$$
\Rightarrow J(u) = \frac{1}{2}a(u, u) - \langle f, u \rangle \qquad \text{subject to} \qquad \begin{cases} \Delta b(u, \mu) = \langle g, \mu \rangle & (\mu \in M). \\ \hat{I} & \hat{I} \end{cases}
$$

Apply the method of the Lagrange multipliers.

$$
L(u, \lambda) = J(u) + [blu, \lambda) - Lg, \lambda]
$$

\n
$$
Tvdvdd (u, \lambda) \in X \times M
$$

\n
$$
a(u,v) + b(v, \lambda) = (J,v) \quad (v \in X)
$$

\n
$$
b(u, m) = (y, m) \quad (m eM)
$$

\nSaddle point problem

Example: Saddle Point Problem in \mathbb{R}^2

$$
f(x, y) = x2 + y2 \rightarrow \min!
$$

$$
g(x, y) = x + y = 2
$$

Lagrangian: $\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 + y^2 + \lambda(x + y - 2)$.

Show that $x = y = 1$, $\lambda = -2$ is a saddle point.

Stokes Equation

$$
\Delta u \widehat{\nabla p} = \widehat{f}(x \in \Omega), \n\rightarrow \nabla \cdot u = 0 \quad (x \in \Omega), \nu = u_0 \quad (x \in \partial \Omega). \quad \text{(1)} \quad \downarrow
$$

What are the pieces?

- Un is velocity
- p is the pessive - f is an externally oppthod forcefield

Stokes: Properties

$$
\Delta u + \nabla p = -f \quad (x \in \Omega),
$$

\n
$$
\Delta v + \nabla p = -f \quad (x \in \Omega),
$$

\n
$$
u = \overline{u_0} \quad (x \in \partial \Omega).
$$

Can we choose any \mathbf{u}_0 ?

$$
\int_{\partial\Omega} \overrightarrow{h}_{\partial} \cdot \overrightarrow{h} dS_{x} = \int_{\partial\Omega} \overrightarrow{h} \cdot \overrightarrow{h} = \int_{\partial\Omega} \nabla \cdot \overrightarrow{h} = \overrightarrow{O}
$$

Does Stokes fully determine the pressure?

Stokes: Variational Formulation

$$
\Rightarrow \Delta u + \underline{\nabla p} = -f, \qquad \nabla \cdot u = 0 \quad (x \in \partial \Omega). \quad \Im \mathcal{L} \subset \mathbb{R}^k
$$

Choose some function spaces (for homogeneous $u_0 = 0$).

$$
\times \quad \text{H}^1_{\text{S}}\text{R}^1 \times \text{H}^1_{\text{B}}(\text{R}) = \left(\text{H}^1_{\text{B}}(\text{R})\right)^2 \neq \text{H}^2
$$
\n
$$
\text{M} = \left(\frac{2}{\text{B}}\right)(\text{R}) = \left(\frac{2}{\text{B}}\text{R}^1_{\text{B}}(\text{R})\right)^2 \neq \text{H}^2
$$

Derive a weak form.

$$
a(\vec{x},\vec{y}) = \int_{\vec{\lambda}} \vec{J}_{\mu} \cdot \vec{J}_{\nu} \qquad b(\vec{v}, q) = \int (\vec{v} \cdot \vec{v}) q
$$

\n
$$
A \cdot \vec{D} = tr(AB^{T}) = \sum_{i,j} \vec{A}_{ij} B_{ij}
$$

\n
$$
\frac{\text{Find}}{1 - dw^{*}} = \text{grad} \quad a(\vec{a}, \vec{v}) + b(\vec{c}, \rho) = (\vec{f}, \vec{v}) \quad \forall \in X
$$

\n
$$
V_{\text{in}} \cdot \vec{D} \cdot \vec{A} = \text{grad} \quad b(\vec{a}, q) = 0 \qquad \text{and} \qquad V_{\text{in}} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D}
$$

Solvability of Saddle Point Problems

The Stokes weak form is clearly in saddle-point form. Do all saddle point problems have unique solutions?

The inf-sup Condition

Condition
\n
$$
a(\underline{u}, \underline{v}) + b(\underline{v}, \lambda) = \langle f, \underline{v} \rangle \quad (\underline{v} \in X),
$$
\n
$$
b(\underline{u}, \underline{\mu}) = \langle g, \underline{\mu} \rangle \quad (\underline{\mu} \in M).
$$
\n
$$
\begin{array}{ccc}\n\left(\begin{array}{c}\nA & O \\
B^T & O\n\end{array}\right) & \sim \left(\begin{array}{c}\nA & O \\
\circ & -g^T \Lambda^T D\n\end{array}\right) \\
\downarrow \\
\downarrow\n\end{array}
$$

Theorem (Brezzi's splitting theorem (Braess, III.4.3))

The saddle point problem has a unique solution if and only if

The bilinear form
$$
a(\cdot, \cdot)
$$
 is V-elliptic, where
 $V = \{u : b(u, \mu) = 0$ for all $\mu \in M\}$, i.e. there exists $c_0 > 0$ so that

$$
a(v_{j}v) \geq c_{\circ}||v||_{X}^{2}.
$$

 \triangleright There exists a constant $c_2 > 0$ so that (inf-sup or LBB condition):

$$
\boxed{\inf_{\substack{\text{inf } \\ \text{inf } \\ \text
$$

inf-sup and Stokes

$$
\begin{bmatrix}\na(\mathbf{u}, \mathbf{v}) &= \int_{\Omega} J_{\mathbf{u}} : J_{\mathbf{v}}, \\
b(\mathbf{v}, q) &= \int_{\Omega} \nabla \cdot \mathbf{v} q.\n\end{bmatrix}
$$

$$
J_{\mathbf{u}}: J_{\mathbf{v}}, \qquad \text{where } A: B = \text{tr}(AB^T),
$$

Find $(\boldsymbol{u}, p) \in X \times M$ so that

$$
a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = \langle \mathbf{f}, \mathbf{v} \rangle_{L^2} \quad (\mathbf{v} \in X),
$$

$$
b(\mathbf{u}, q) = 0 \quad (q \in M).
$$

Theorem (Existence and Uniqueness for Stokes (Braess, III.6.5))

There exists a unique solution of this system when $f \in H^{-1}(\Omega)^n$.

(based on results due to Ladyšenskaya, Nečas)

Demo: 2D Stokes Using Firedrake (P^1-P^1)

Give a heuristic reason why $P^1 - P^1$ might not be great.

Demo: Bad Discretizations for 2D Stokes

Establishing a Discrete inf-sup Condition Suppose $b: X \times M \to \mathbb{R}$ satisfies inf-sup. Subspaces $(X_h \subseteq X, M_h \subseteq M.$ Fortin's Criterion ([Fortin 1977]) Suppose there exists a bounded projector $\Pi_h: X \to X_h$ so that $b(v,m_h)=b(T_hv,m_h)$ (VEX/ED b/v- $\pi_{A',m_h}=0$ (VEX/ $\|\Pi_h\| \leq c$ for some constant c independent of h, then b satisfies the inf-sup-condition on $X_h \times M_h$. Let $M_h \in M_h$ $\lim_{\nu_{i}\in X_{n}}\frac{b(v_{\nu_{i}}\mu_{n})}{\|v_{n}\|} \gg \lim_{\nu_{i}\in T_{k}X} \frac{b(v_{\nu_{i}}\mu_{n})}{\|v_{n}\|} = \lim_{\nu\in V} \frac{b(\overline{T_{n}}\nu_{i}\mu_{n})}{\|T_{n}\nu\|} \leq \frac{c_{h}\rho b(v_{\nu}\mu_{n})}{\|T_{n}\nu\|}$ $\geq \frac{1}{c} \frac{c_{n}p_{0}(v_{1}p_{n})}{||u||} \geq c_{2}||p_{n}||.$

H^1 -Boundedness of the L^2 -Projector

Assume H^2 -regularity and a uniform triangulations \mathcal{T}_h . (Not in general!)

 H^1 -Boundedness of the L^2 -Projector (Braess Corollary II.7.8)

Let π_h^0 be the L_2 -projector onto a finite element space $V_h \subset H^1(\Omega)$. Then, for an h -independent constant c ,

$$
\|\mathcal{L}_{\mathcal{U}}^{\mathcal{U}}\|_{\mathcal{U}^{\mathcal{U}}} \leq \|\mathcal{U}_{\mathcal{U}^{\mathcal{U}}}\|_{\mathcal{U}^{\mathcal{U}}}
$$

Ingredients?

$$
= \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\nabla_{\mathbf{y}_{n}}\cdot\int_{\mathbb{R}^{n}}\nabla_{\mathbf{y}_{n}}\cdot\int_{\mathbb{R}^{n}}\nabla_{\mathbf{y}_{n}}\cdot\int_{\mathbb{R}^{n}}\nabla_{\mathbf{y}_{n}}\cdot\int_{\mathbb{R}^{n}}\nabla_{\mathbf{y}_{n}}\cdot\int_{\mathbb{R}^{n}}\nabla_{\mathbf{y}_{n}}\cdot\int_{\mathbb{R}^{n}}\nabla_{\mathbf{y}_{n}}\cdot\int_{\mathbb{R}^{n}}\nabla_{\mathbf{y}_{n}}\cdot\int_{\mathbb{R}^{n}}\cdot\int
$$

 H^1 -Boundedness of the L^2 -Projector

Does H^1 boundedness of the H^1 projector hold?

How would this break down without the uniformity assumption?

Bubbles and the MINI Element

What is a bubble function?

$$
\varphi_b(r,s) = v \cdot s(1-r-s)
$$

Let B^3 be the span of the bubble function and \mathcal{T}_h the triangulation.

Define the MINI variational space $X_h \times M_h$.

$$
\chi_n = p^1 + \beta^3
$$

$$
M_n = p^1
$$

Computational impact of the bubble DOF?

The Bubble in Pictures

MINI Satisifies an inf-sup Condition (1/4)

MINI satisifes inf-sup (Braess Theorem III.7.2)

Assume Ω is convex or has a smooth boundary. Then the MINI variational space satisfies an inf-sup condition for every variational form that itself satisfies one.

MINI Satisifies an inf-sup Condition (2/4)

Create a projector onto the bubble space B^3 .

$$
\pi_{h}^{1}: L^{2} \to \mathbb{B}^{3}
$$
\n
$$
\int_{\xi} (\bar{h}_{h}^{1} V - V) \pm \circlearrowright \quad \text{for} \quad \xi \in \mathbb{C}_{h}
$$

What does this bubble projector do?

$$
= \rho^{n\sigma} \int_{a_{cc}}^{\infty} \cos \phi.
$$

Do we have an estimate for the bubble projector?

MINI Satisifies an inf-sup Condition (3/4)

Make an overall projector Π_h onto X_h .

Show Fortin's criterion for Π_h .

MINI Satisifies an inf-sup Condition (4/4)

\n- $$
\|\pi_h^0 v\|_{H^1} \leq c_1 \|v\|_{H^1}
$$
 for L^2 projector $\pi_h^0 : H_0^1 \to \mathcal{M}_h$.
\n- $\|v - \pi_h^0 v\|_{L^2} \leq c_2 h |v|_{H^1}$.
\n- $\|\pi_h^1 v\|_{L^2} \leq c_3 \|v\|_{L^2}$.
\n

Show H^1 -boundedness of Π_h .

Demo: 2D Stokes Using Firedrake (MINI and Taylor-Hood)