






Function Spaces

Consider

fn(x) =





−1 x ≤ − 1
n ,

3n
2 x − n3

2 x3 − 1
n < x < 1

n ,

1 x ≥ 1/n.

Converges to the step function. Problem?
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Norms

Definition (Norm)

A norm ∥ · ∥ maps an element of a vector space into [0,∞). It satisfies:
▶ ∥x∥ = 0 ⇔ x = 0
▶ ∥λx∥ = |λ|∥x∥
▶ ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)
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Convergence

Definition (Convergent Sequence)

xn → x :⇔ ∥xn − x∥ → 0 (convergence in norm)

Definition (Cauchy Sequence)
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Banach Spaces

Definition (Complete/“Banach” space)

What’s special about Cauchy sequences?

Counterexamples?
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More on C 0

Let Ω ⊆ Rn be open. Is C 0(Ω) with ∥f ∥∞ := supx∈Ω |f (x)| Banach?

Is C 0(Ω̄) with ∥f ∥∞ := supx∈Ω |f (x)| Banach?
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Cm Spaces
Let Ω ⊆ Rn.

Consider a multi-index k = (k1, . . . , kn) ∈ Nn
0 and define the symbols

Definition (Cm Spaces)
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Lp Spaces
Let 1 ≤ p < ∞.

Definition (Lp Spaces)

Lp(Ω) :=

�
u : (u : R → R) measurable,

Z

Ω
|u|p dx < ∞

�
,

∥u∥p :=

�Z

Ω
|u|p dx

�1/p

.

Definition (L∞ Space)

L∞(Ω) := {u : (u : R → R), |u(x)| < ∞ almost everywhere} ,
∥u∥∞ = inf {C : |u(x)| ≤ C almost everywhere} .
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Lp Spaces: Properties

Theorem (Hölder’s Inequality)

For 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1 and measurable u and v ,

Theorem (Minkowski’s Inequality (Triangle inequality in Lp))

For 1 ≤ p ≤ ∞ and u, v ∈ Lp(Ω),
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Inner Product Spaces
Let V be a vector space.

Definition (Inner Product)

An inner product is a function ⟨·, ·⟩ : V × V → R such that for any
f , g , h ∈ V and α ∈ R

⟨f , f ⟩ ≥ 0,
⟨f , f ⟩ = 0 ⇔ f = 0,
⟨f , g⟩ = ⟨f , g⟩ ,

⟨αf + g , h⟩ = α ⟨f , h⟩+ ⟨g , h⟩ .

Definition (Induced Norm)

∥f ∥ =
p

⟨f , f ⟩.
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Hilbert Spaces
Definition (Hilbert Space)

An inner product space that is complete under the induced norm.

Let Ω be open.

Theorem (L2)

L2(Ω) equals the closure of (set of all limits of Cauchy sequences in)
C∞

0 (Ω) under the induced norm ∥·∥2.

Theorem (Hilbert Projection (e.g. Yosida ‘95, Thm. III.1))
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Weak Derivatives
Define the space L1

loc of locally integrable functions.

Definition (Weak Derivative)

v ∈ L1
loc(Ω) is the weak partial derivative of u ∈ L1

loc(Ω) of multi-index
order k if
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Weak Derivatives: Examples (1/2)
Consider all these on the interval [−1, 1].

f1(x) = 4(1 − x)x

f2(x) =

(
2x x ≤ 1/2,
2 − 2x x > 1/2.

194



Weak Derivatives: Examples (2/2)

f3(x) =

r
1
2
−
p

|x − 1/2|
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Sobolev Spaces
Let Ω ⊂ Rn, k ∈ N0 and 1 ≤ p < ∞.

Definition ((k , p)-Sobolev Norm/Space)
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More Sobolev Spaces
W 0,2?

W s,2?

H1
0 (Ω)?
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An Elliptic Model Problem
Let Ω ⊂ Rn open, bounded, f ∈ H1(Ω).

−∇ ·∇u + u = f (x) (x ∈ Ω),

u(x) = 0 (x ∈ ∂Ω).

Let V := H1
0 (Ω). Integration by parts? (Gauss’s theorem applied to ab):

Weak form?
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Motivation: Bilinear Forms and Functionals
Z

Ω
∇u ·∇v +

Z

Ω
uv =

Z
fv .

This is the weak form of the strong-form problem. The task is to find a
u ∈ V that satisfies this for all test functions v ∈ V .

Recast this in terms of bilinear forms and functionals:
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Dual Spaces and Functionals
Bounded Linear Functional
Let (V , ∥·∥) be a Banach space. A linear functional is a linear function
g : V → R. It is bounded (⇔ continuous) if there exists a constant C so
that |g(v)| ≤ C ∥v∥ for all v ∈ V .

Dual Space

Let (V , ∥·∥) be a Banach space. Then the dual space V ′ is the space of
bounded linear functionals on V .

Dual Space is Banach (cf. e.g. Yosida ‘95 Thm. IV.7.1)

V ′ is a Banach space with the dual norm
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Functionals in the Model Problem
Is g from the model problem a bounded functional? (In what space?)

That bound felt loose and wasteful. Can we do better?
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Riesz Representation Theorem (1/3)
Let V be a Hilbert space with inner product ⟨·, ·⟩.
Theorem (Riesz)

Let g be a bounded linear functional on V , i.e. g ∈ V ′. Then there exists
a unique u ∈ V so that g(v) = ⟨u, v⟩ for all v ∈ V .
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Riesz Representation Theorem: Proof (2/3)

Have w ∈ N(g)⊥ \ {0}, α = g(w) ̸= 0, and z := v − (g(v)/α)w ⊥ w .
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Riesz Representation Theorem: Proof (3/3)

Uniqueness of u?
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Back to the Model Problem

a(u, v) = ⟨∇u,∇v⟩L2 + ⟨u, v⟩L2

g(v) = ⟨f , v⟩L2

a(u, v) = g(v)

Have we learned anything about the solvability of this problem?
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Poisson
Let Ω ⊂ Rn open, bounded, f ∈ H−1(Ω).

This is called the Poisson problem (with Dirichlet BCs).

Weak form?
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Ellipticity
Let V be Hilbert space.

V -Ellipticity

A bilinear form a(·, ·) : V × V → R is called coercive if there exists a
constant c0 > 0 so that

and a is called continuous if there exists a constant c1 > 0 so that

If a is both coercive and continuous on V , then a is said to be V -elliptic.
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Lax-Milgram Theorem
Let V be Hilbert space with inner product ⟨·, ·⟩.
Lax-Milgram, Symmetric Case

Let a be a V -elliptic bilinear form that is also symmetric, and let g be a
bounded linear functional on V .
Then there exists a unique u ∈ V so that a(u, v) = g(v) for all v ∈ V .

209



Back to Poisson
Can we declare victory for Poisson?

Can this inequality hold in general, without further assumptions?
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Poincaré-Friedrichs Inequality (1/3)
Theorem (Poincaré-Friedrichs Inequality)

Suppose Ω ⊂ Rn is bounded and u ∈ H1
0 (Ω). Then there exists a constant

C > 0 such that
∥u∥L2 ≤ C ∥∇u∥L2 .
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Poincaré-Friedrichs Inequality (2/3)
Prove the result in C∞

0 (Ω).
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Poincaré-Friedrichs Inequality (3/3)

Prove the result in H1
0 (Ω).
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Back to Poisson, Again

Show that the Poisson bilinear form is coercive.

Draw a conclusion on Poisson:
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Ritz-Galerkin
Some key goals for this section:
▶ How do we use the weak form to compute an approximate solution?
▶ What can we know about the accuracy of the approximate solution?

Can we pick one underlying principle for the construction of the
approximation?
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Galerkin Orthogonality

a(u, v) = g(v) for all v ∈ V , a(uh, vh) = g(vh) for all vh ∈ Vh.

Observations?
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Céa’s Lemma
Let V ⊂ H be a closed subspace of a Hilbert space H.

Céa’s Lemma
Let a(·, ·) be a coercive and continuous bilinear form on V . In addition, for
a bounded linear functional g on V , let u ∈ V satisfy

a(u, v) = g(v) for all v ∈ V .

Consider the finite-dimensional subspace Vh ⊂ V and uh ∈ Vh that satisfies

a(uh, vh) = g(vh) for all vh ∈ Vh.

Then
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Céa’s Lemma: Proof

Recall Galerkin orthgonality: a(uh − u, vh) = 0 for all vh ∈ Vh. Show the
result.
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Elliptic Regularity
Definition (H s Regularity)

Let m ≥ 1, Hm
0 (Ω) ⊆ V ⊆ Hm(Ω) and a(·, ·) a V -elliptic bilinear form.

The bilinear form a(u, v) = ⟨f , v⟩ for all v ∈ V is called Hs regular, if for
every f ∈ Hs−2m there exists a solution u ∈ Hs(Ω) and we have with a
constant C (Ω, a, s),

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H1
0 -elliptic bilinear form with sufficiently smooth coefficient

functions.
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Elliptic Regularity: Counterexamples
Are the conditions on the boundary essential for elliptic regularity?

Are there any particular concerns for mixed boundary conditions?
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Estimating the Error in the Energy Norm
Come up with an idea of a bound on ∥u − uh∥H1 .

What’s still to do?
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L2 Estimates
Let H be a Hilbert space with the norm ∥·∥H and the inner product ⟨·, ·⟩.
(Think: H = L2, V = H1.)

Theorem (Aubin-Nitsche)

Let V ⊆ H be a subspace that becomes a Hilbert space under the norm
∥·∥V . Let the embedding V → H be continuous. Then we have for the
finite element solution u ∈ Vh ⊂ V :

if with every g ∈ H we associate the unique (weak) solution φg of the
equation (also called the dual problem)
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