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 SIAM J. NUMER. ANAL.

 Vol. 10, No. 2, April 1973

 NESTED DISSECTION OF A REGULAR FINITE ELEMENT MESH*

 ALAN GEORGEt

 Abstract. Let M be a mesh consisting of n2 squares called elements, formed by subdividing the
 unit square (0, 1) x (0, 1) into n2 small squares of side 1/h, and having a node at each of the (n + 1)2
 grid points. With M we associate the N x N symmetric positive definite system Ax = b, where

 N = (n + 1)2, each xi is associated with a node of M, and Aij # 0 if and only if xi and xi are associated
 with nodes of the same element. If we solve the equations via the standard symmetric factorization of
 A, then 0(n4) arithmetic operations are required if the usual row by row (banded) numbering scheme
 is used, and the storage required is 0(n3). In this paper we present an unusual numbering of the mesh
 (unknowns) and show that if we avoid operating on zeros, the LDLT factorization of A can be computed
 using the same standard algorithm in 0(n3) arithmetic operations. Furthermore, the storage required
 is only 0(n2 1og2 n). Finally, we prove that all orderings of the mesh must yield an operation count of
 at least 0(n3), provided we use the standard factorization algorithm.

 1. Introduction. It is well known that if we avoid operating on and storing
 zeros, the way we number or order the unknowns of a sparse system of equations
 can drastically affect the amount of computation and storage required for their
 direct solution. In this paper we consider this ordering problem for a finite element
 system of equations associated with a regular n x n mesh or grid. This sparse
 system has a very definite structure which we show can be exploited to considerable
 advantage. The problem we consider is special, but as we indicate in our concluding
 remarks, the techniques we use can be applied in more general situations.

 We first define a finite element system of equations. Let M be any mesh
 formed by subdividing a planar region R with boundary OR by a number of arcs,
 all of which terminate on an arc or on OR. The mesh so formed consists of the
 union of subregions which we call elements. We require that M have a node at
 each vertex in the mesh, and it may have nodes on edges and in the interior of some
 or all of the elements. (A vertex of M is any point in R U OR having more than
 two arcs emanating from it.) We refer to these nodes as vertex, edge, and interior
 nodes respectively. We call such a mesh a finite element mesh.

 Let M have N nodes, numbered in some way from 1 to N. Associating an

 unknown xi with the ith node leads us to the following.
 DEFINITION. A finite element system of equations associated with the finite

 element mesh M is any N x N symmetric positive definite system Ax = b having

 the property that Aip #0 if and only if xi and xj are associated with nodes of the
 same element of M.

 The reader familiar with the use of finite element techniques may wonder
 why we allow M to be more general than the meshes usually employed in finite
 element methods. Usually M is the union of triangular and/or quadrilateral
 elements with adjacent elements having a common side or vertex. Our intention

 * Received by the editors March 17, 1972, and in revised form July 25, 1972.
 t This work was supported in part by a University of Waterloo research grant, and in part by

 Canadian National Research Council Grant A81 11. Alan George received his Ph.D. in Computer
 Science in 1971 from Stanford University under the joint direction of Professor Forsythe and Dr. Fred
 Dorr. He is now Assistant Professor of Computer Science at the University of Waterloo, Waterloo,
 Ontario, Canada.
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 346 ALAN GEORGE

 is to introduce a sequence of meshes which correspond (in the sense above) to a
 sequence of matrices which arise during the computation. These derived meshes
 have a less restricted topology than the original M.

 Since there is a 1-1 correspondence between nodes and unknowns, we do
 not distinguish between them in the sequel.

 In this paper we consider the ordering problem for the finite element system

 (1.1) Ax= b,

 associated with the mesh M formed by subdividing the unit square R = (0, 1)
 x (0, 1) into n2 small squares (elements) having side length 1/h. The mesh has a
 node at each of the N = (n + 1)2 vertices. The method we use to solve (1.1) is
 direct; we compute the symmetric factorization LDLT of A, where L is unit lower
 triangular and D is a positive diagonal matrix. We then obtain x by solving
 Ly = b, Dz = y, and finally LTx = z.

 Our measure of computational difficulty for the solution of (1.1) is 0, the
 number of multiplicative operations (multiplications and divisions) required to
 factor A. We regard this as a reasonable measure, since the required number of
 additions and subtractions is about the same, and the factorization is typically
 the major portion of the computation. In the following, "operations" will mean
 multiplicative operations. We measure storage requirements by 1, the number of
 nonzero off-diagonal components in L.

 Consider any matrix A(5) obtained from a matrix A in our class by setting

 Aij to zero unless xi and x, are associated with nodes on the extremity of the same
 element edge. Such a matrix arises when we apply the usual 5-point difference
 operator in connection with solving self-adjoint elliptic boundary problems with
 rectangular domains [3]. Hoffman, Martin and Rose [6] show that symmetric
 positive definite matrices having the structure of A(5) require at least 0(n3)
 operations for their factorization, and the corresponding lower triangular factor
 must have at least 0(n 2 1og2 n) nonzero components. Since A is obtained from
 A(5) by adding nonzero components, it follows that these results also hold for A.
 It is important to appreciate that these results apply for the particular algorithm
 described in ? 2, and, in this context, we conclude that the ordering we present
 here is optimal, in the order of magnitude sense.

 Since we do not make explicit use of the actual numerical values of A, our

 upper bounds for 0 and q hold regardless of whether or not unknowns associated
 with the same element are indeed connected. However, to avoid tedious qualifi-

 cations in the discourse that follows, we assume that if unknowns xi and x; are
 associated with the same element, then Aij # 0. If this is not the case, our upper
 bounds will simply not be sharp.

 An ordering similar but somewhat inferior to the one we present here appears
 in [4]. The bound on 0 we obtain here halves the one obtained in that article.

 In ? 2 and ? 3 we introduce quantities and a model which allow us to con-

 veniently determine 0 and l for a given ordering (numbering) of M. In ? 4 we
 present an ordering of the mesh which results in 0 = 0(n3) and l = 0(n2 1og2 n),
 and in ? 5 we show that if we apply the symmetric decomposition algorithm, any
 ordering of the mesh must result in 0 = 0(n3).
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 NESTED DISSECTION 347

 2. Symmetric elimination. Using the outer product formulation employed
 by Rose [8], we describe the factorization of A into LDLT by the following equa-
 tions. Setting A = AO = Bo, we have

 /d, v\T o1 \ d 0 \ /1 VT I/d\

 \v1 B'1) \Vd1 IN-d 1 0 IN|

 = L1(, d B)LT = L1A1LT,

 ( B, )
 (2.1)

 0,
 Al d T
 A 1- 2 V2

 0 (d, d 0 /1 0
 = V~2 1N2) B'2 ) 0

 (? V2 IN 2) (0 B2 _ V2V27 1 v2'/

 - 2 2 N-2 22.2IN2/

 AN- = D.

 Here dk is a positive scalar, Vk is a vector of length N - k, and B' is an (N - k)
 x (N - k) symmetric positive definite matrix. In the sequel Bk = B -Vk vk/dk is
 referred to as "the part of A remaining to be factored" after the first k steps of the
 factorization have been performed. Following Rose [8], we refer to performing
 the kth step of the factorization as "eliminating variable Xk."

 Since A is sparse, the vectors Vk will usually also have some zeros. Define Vk
 to be the number of nonzero components in Vk. Then we have the following lemma.

 LEMMA 2.1 (Rose [8]). Provided we avoid operating on zeros, the number of
 multiplicative operations required to factor A into LDLT is

 N- I V(vk + 3)
 (2.2) o = V 2k +3

 k=1 2

 and the number of nonzero off-diagonal components in L is

 N-1

 (2.3) =E Vk.
 i~= 1

 Proof. It is straightforward to verify from (2.1) that the cost ok of performing
 the kth step of the factorization is Vk(Vk + 3)/2. Summing over k and noting that
 VN 0 yields (2.2).

 Equation (2.3) can be derived by observing first that (2.1) implies that
 A = L1L2 * LN_ DLN_ILN-2 IL1, and it is easy to show that

 N-1

 L = E Lk-(N-2)I.
 k= 1
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 348 ALAN GEORGE

 Thus, the kth column of L is precisely the kth column of Lk, which immediately
 implies (2.3). This concludes the proof.

 Un-eliminated variables xj and Xk are referred to as being connected if their
 corresponding off-diagonal components in Bi (i < j, k) are nonzero. Obviously,
 unconnected variables can become connected as the factorization proceeds.
 Specifically, if we assume that we do not create zeros through cancellation (which
 is a reasonable assumption in the presence of roundoff error), then the following
 holds.

 LEMMA 2.2 (Parter [7]). The elimination of variable Xk pairwise connects all

 variables xi, i > k, to which Xk was connected at the point of its elimination.
 Proof. Referring to equations (2.1), we note that eliminating Xk modifies Bk

 by subtracting the rank-one matrix VkVk' from it, forming Bk. The matrix VkVf has
 nonzeros in position (i, j) for all i and j corresponding to nonzero components in

 vk. Assuming no cancellation in the subtraction, Bk must have nonzeros in the
 same positions, proving the lemma.

 Rose [8] refers to sets of unknowns which are pairwise connected (every
 unknown in the set is connected to every other unknown in the set) as cliques.
 Thus, eliminating an unknown xk which is connected to a set of variables S renders
 that set a clique.

 The following lemma is a direct application of Lemmas 2.1 and 2.2.

 LEMMA 2.3. Let Q = {Xi1, Xi2, 9..., Xi} and R = {xj, 2,x 2, ... , xj} be two
 sets of unknowns, with unknowns XkC Q connected to every unknown xl E Q U R
 and no others. Then if 1k < ij for 1 < k < q and 1 < 1 < r, the contribution to 0
 from elimination of the unknowns in Q is

 (2.4) m(q, r) = m1(q) + m2(q, r),

 where
 q3 q2 2

 (2.5) m1(q) = - + - 2 q
 6 2 3

 and
 qr

 (2.6) m2(q,r) = -(q + r + 2).
 2

 The storage required for columns i1, i2, ... iq of L is

 (2.7) s(q, r) = 2q (q + 2r -1).

 Proof. Since we assume variables in Q are connected only among themselves

 and to those in R, we can without loss of generality assume ik = k and jk = q + k.
 We then need only consider the cost of performing the first q steps of the factoriza-

 tion of a (q + r) x (q + r) matrix whose first q columns are dense. This implies
 Vk = q + r- k = 1, 2, ..., q, and using (2.2), we have

 q

 m(q, r) = - 2(q + r - k)(q + r - k + 3)
 k= 1

 q q

 = Z ,2q - k)(q - k + 3) + , 2r(r + 2q - 2k + 3)
 k=1 k=1

 = ml(q) + m2(q, r).
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 NESTED DISSECTION 349

 Similarly, using (2.3) along with the above formula for Vk, we have

 q

 s(q, r)= (q + r - k) = 4q(q + 2r - 1).
 k= 1

 3. A mesh model for the analysis of the factorization. In the Introduction we

 defined the zero-nonzero structure of finite element systems of equations in terms
 of a planar mesh. We now establish a correspondence between elimination of

 certain sets of unknowns in (1.1) and corresponding changes in M. Denoting M

 by MO, we arrange that after the kth step of the factorization, we have a mesh Mk
 which corresponds to Bk in the sense that unknowns still to be eliminated are

 connected only if they are associated with the same element of Mk. In other words,
 Bk is afinite element matrix corresponding to Mk.

 For example, consider the mesh Mo depicted in Fig. 3.1, consisting of
 rectangular elements, and numbered as indicated. Unnumbered nodes are assumed

 to have numbers greater than 1.

 __ _ ____ __ 1

 FIG. 3.1. The mesh Mo

 By our definition of finite element matrices, x1 is connected to all of the

 8 other unknowns which are associated with the same elements as x1. Keeping
 in mind that only unknowns associated with the same element may be connected,

 and recalling Lemma 2.2, the mesh M1 which reflects the structure of B1 must
 have the 8 unknowns mentioned above all associated with the same element.
 Thus, M1 must be as shown in Fig. 3.2, where a new element has been formed by
 merging four elements of M.

 Consider a second mesh example (Fig. 3.3), which has some edge nodes as
 well as vertex nodes. Here we assume unnumbered nodes have numbers greater
 than 2. Which mesh M1 correctly reflects the structure of B1, the part of the matrix

 remaining after the first step of the factorization is complete? By the same argu-
 ments as before, the 8 unknowns Xk, k > 2, associated with the two elements
 sharing nodes 1 and 2 must be associated with the same element in M1. Thus,
 these two adjacent elements must coalesce. Node (unknown) 2 is already connected
 to all unknowns of the two elements, and eliminating x1 does not connect it to
 any others. Thus, B1 's structure is correctly described by the mesh in Fig. 3.4,
 where node 2 is now interior to the newly formed element. Since elimination of
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 350 ALAN GEORGE

 FIG. 3.2. Derived mesh M1

 FIG. 3.3. Mesh Mo

 FIG. 3.4. Mesh M1 derived from the mesh Mo of Fig. 3.3

 variable x2 only involves variables to which x2 is already connected, the mesh M2
 derived from M1 and corresponding to B2 would simply be the mesh of Fig. 3.4
 with node 2 removed.

 Finally, to completely fix these ideas in mind, consider the mesh Mo depicted
 in Fig. 3.5. Unnumbered nodes are assumed to have numbers greater than 9.
 Using our examples developed above, the reader should now be able to verify
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 NESTED DISSECTION 351

 1 1 6 1_L2

 FIG. 3.5. Mesh MO

 that the meshes M1, M2, ***, Mg shown in Fig. 3.6 correspond to B1, B2, * , Bg
 respectively.

 Summarizing, we have developed the following mesh transformation rules.
 Rule 1. The elimination of a variable associated with an interior node corre-

 sponds to removal of that node from the mesh; for example, the transformation
 from M7 to M8 in Fig. 3.6.

 M, M2 M 3

 T T _ T r- t r T T T T~--t
 M4 M5 M6

 T 7 T T t t T t t tM tt
 M7 MR MgThis content downloaded from 
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 352 ALAN GEORGE

 Rule 2. The elimination of a variable associated with an edge node on an
 edge e corresponds to removal of the node and edge from the mesh, but other
 nodes on e remain, and become interior nodes of a new element; for example,

 the transformation of M6 to M7 in Fig. 3.6.
 Rule 3. The elimination of a variable associated with a vertex node corresponds

 to removal of the vertex node and all its incident element edges. Other nodes lying
 on these edges remain, and become interior nodes of a newly formed element.

 In order to preserve our element structure when eliminating nodes on the

 boundary, we must interpret our rules somewhat carefully. First observe that as

 far as the matrix structure is concerned, the two meshes in Fig. 3.7 are equivalent.

 FIG. 3.7. Two meshes having equivalent matrix structure

 When eliminating unknowns associated with nodes on the boundary, we shall

 assume that edge nodes have been moved to the interior of an element and vertex
 nodes have been moved onto an edge as indicated in Fig. 3.7. We then apply our

 rules as before to this perturbed mesh, which has no nodes on OR. An example of
 the applications of the rules in this situation is given in Fig. 3.8.

 3 1- -- 4

 MO

 Ml M2 M3

 M4 Ms M6

 FIG. 3.8. Modification of the mesh when variables associated with boundary nodes are eliminated
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 NESTED DISSECTION 353

 Thus, using this model, every numbering of the mesh determines a sequence

 of finite element meshes which reflects the changing structure of the part of the

 matrix remaining to be factored. The last member in the sequence MO, M1l ... , MN
 consists of a single boundary element whose boundary is OR, with all nodes
 removed.

 The reader familiar with the graph theory model of elimination extensively

 employed by Rose [8] for analyzing sparse matrix computations will recognize

 the close relationship between our model and the graph model. By simply joining
 every pair of nodes associated with the same element of M, we obtain the
 (undirected) graph corresponding to A. Doing the same for our Mk, k = 1, 2,... , N,
 yields a sequence of elimination graphs. Elements correspond to cliques. Thus, our

 model can be viewed as a graph theory model where many of the edges of the
 graph are not explicitly drawn, but are made implicit through the introduction

 of elements. For our particular application, our model has the advantage of being
 somewhat easier to draw and interpret. For less structured problems and in other
 contexts, the graph model is more appropriate.

 4. A nested dissection ordering of M and some crude bounds. In this section

 we describe an ordering of our n x n mesh M which yields 0 = 0(n3) and

 q = 0(n2 1og2 n). To simplify the presentation, we do not attempt to find the
 constants involved; the interested reader will find a careful analysis in the
 Appendix.

 We begin by defining some sets of unknowns (nodes), where xij denotes the
 unknown associated with node (ih,jh). We assume initially that n = 2'. For
 i= 1,..*,n-1 define

 7t(i)=p+ 1 if i=2P(2q+ 1).
 Furthermore, define 7t(O) = 1 and 7t(n) = 1. For example, when n = 16, the values
 of 7r(i), i = O, *, 16, are given in the first row of Fig. 4.1. For k = 1,., I define
 the set of nodes Pk by

 (4.1) Pk= {xijlmax (7t(i), 2(j)) = k}.
 Denoting membership in Pk by the number k, these node sets are depicted

 in Fig. 4.1 for n = 24 = 16. To aid the description we have put lines around P4

 and a few subsets of P,, P2 and P3.
 Notice that P4 subdivides the nodes (unknowns) into 4 subsets which are

 mutually independent in the sense that if xi and xj are in different subsets, then
 Aij = 0. In the same way, P3 subdivides each of these subsets into 4 mutually
 independent subsets, and so on. Hence the name "nested dissection."' Each of

 the Pi themselves consists of independent sets of nodes which increase in size
 with i. For i > 1 these subsets are "+ " shaped. The subsets of each Pi might be
 appropriately named "separating sets."

 Now our overall strategy is to number the unknowns in Pl, followed by
 those in P2 and so on, finally numbering the unknowns in P,. The results we
 establish in this section are independent of the way each Pk is numbered.

 1 The author is indebted to Professor Garret Birkhoff of Harvard University for coining this very
 appropriate term.
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 354 ALAN GEORGE

 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

 2 2 2 2 3 2 2 2 4 2 2 2 3 2 2 2 2

 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3

 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

 2 2 2 2 3 2 2 4 2 2 2 3 2 2 2 2

 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4)

 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

 2 2 2 2 31 2 2 2 4 2 2 2 3 2 2 2 2

 1 1 2 1 31 1 2 1 4 1 2 1 3 1

 (3 3 3 3 3 3 3 3' 4 3 3 3 3 3 3 3 3

 1 1121 3 1 2 1 4 1 2 (3#3 1 2 t 1 1

 st2 2 2 2)3 2 2 2 4 2 2 2 3 2 2 2 2
 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

 1 1 2 ,1 3;1 2- 1 4~ 1 2 1 3 1 2 1 1

 FIG. 4.1. The node sets Pk, k = 1, 2, 3,4

 Using our example above (n = 16), and the model we introduced in ? 3, it
 is not difficult to see that the meshes M1oo, M196, and M256 are as indicated in
 Figs. 4.2, 4.3 and 4.4 respectively. They correspond to the structure of the matrix
 remaining to be factored after unknowns in P1, P1 U P2, and P1 U P2 U P3
 respectively, have been eliminated.

 THEOREM 4.1. Let n = 21 and define the node sets Pk, k = 1, 2, *, 1, by (4.1).
 Number the nodes in increasing order beginning with those in P1,followed by those

 in P2, etc., finally numbering those in P,. Then there exist constants C1 and C2

 F.I -I Th s--h - -- by e f -

 FIG. 4.2. The mesh M100 formed by elimination of unknowns in P1
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 NESTED DISSECTION 355

 FIG. 4.3. The mesh Ml96 formed by eliminating unknowns in P1 and P2

 such that

 (4.2) 0 < Cln3

 and

 (4.3) 6 < C2n2 10g2 n.
 Proof. First observe that Pk consists of n2/22k independent sets of unknowns,

 and note that they remain independent during the elimination. That is, unknowns
 in different subsets of Pk never become connected during the elimination. Each
 independent set has no more than 2k+ 1 unknowns in it, and each unknown in the

 FIG. 4.4. The mesh M256 formed by eliminating unknowns in P1, P2 and P3
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 356 ALAN GEORGE

 set is connected to no more than 6.21 - 3 unknowns at the point of its elimination.
 For example, unknowns in P2 are connected to at most 20 unknowns before they
 are eliminated. Thus, using (2.2), we have

 0 < E() 2k+ '(6. 2k)2

 = C'n2 Z 2k < Cln3.
 k= 1

 Similarly, using (2.3), we have

 I n 2l
 < Z .2k- 1 - 6*-2k= C2n Z 1

 (4.4) k= 1 k=1
 = C2n2 1og2 n.

 COROLLARY 4.2. For any n > 2, there exist constants C3 and C4 such that

 (4.5) 0 < C3n3
 and

 (4.6) i < C4n2l1og2 n.

 Proof. Let 21- < n < 21 = n, let M and M be meshes corresponding to
 n and n, and let A correspond to M. Now augment our system of equations (1.1)
 by adding trivial equations of the form 1 . xi = 1, i > (n + 1)2 corresponding to
 nodes of M that are not nodes of M, so that the dimension of our expanded
 coefficient matrix is (h + 1)2. Now number M as in Theorem 4.1 and solve our
 expanded system. A subvector of the solution will be the solution of the original
 problem. Let oc = n-/n < 2. Then by Theorem 4.1,

 0 < Cjii3 = C139n3 < 8C,n3 = C3n3

 and

 i < C2i2 1og2 nl < C2 x2n2(10g2 n + 1og2 x)

 < C22n2(10g2 n + 1) < 8C2n2 lg2 n

 = C4n21og2 n.

 As one might expect, using this crude analysis yields constants Cl, C2, C3
 and C4 which are, from a practical viewpoint, discouragingly large. However, in
 the Appendix we show that if n = 21, then 0 < 10 n3 and i1 < 8 In2.

 5. A lower bound for 0. In this section we show that for the algorithm
 described in ? 2, any order of M must lead to 0 = 0(n3) or greater. Following a
 suggestion of D. J. Rose, our strategy is to show that some member Mi of the
 mesh sequence Mk, k = 0, 1, 2,. * *, N, must contain an element T having n + 1
 nodes associated with it. This implies that Bi must have a dense n + 1 submatrix
 in it.

 LEMMA 5.1. Let M = Mo be the regular n x nfinite element mesh described in
 the Introduction, and let Mk, k = 1, 2, * , N = (n + 1)2, be the mesh sequence
 generated by an arbitrary ordering of M.
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 NESTED DISSECTION 357

 Then at least one element T having n + 1 or more unknowns associated with
 it appears in the mesh sequence.

 Proof. Let Q = (xi, yi) be the first node of M to be removed which completely
 vacates a row or column of the mesh. Since all nodes are eventually removed,
 this situation must arise.

 Suppose the removal of Q vacates exactly one row {column} L. Then L is
 contained in an element T, since by Rule 2, ? 3, removal of the nodes on L removes

 their incident edges. Moreover, the n + 1 columns {rows} orthogonal to L
 necessarily have one or more nodes remaining on them, so proceeding along them
 in one direction or the other from L we must collide with a node lying on the

 boundary of T, proving the theorem.
 Suppose the removal of Q simultaneously vacates both row R and column C

 of M. Since all other nodes on R and C have been removed, Q must necessarily
 be an interior node of an element T containing both R and C. By the same argument

 as above, T is an element having one or more nodes in each of the n + 1 rows
 and columns, again proving the theorem.

 THEOREM 5.2. The number of multiplicative operations required to complete
 the symmetric factorization of A is greater than n3/6, regardless of the way the
 equations are numbered.

 Proof By Lemma 5.1, during the decomposition we necessarily create one
 or more elements 7T having at least n + 1 unknowns associated with it, and they

 are all connected by virtue of belonging to T7. Thus, Bi has a dense (n + 1) x (n + 1)
 submatrix whose symmetric factorization alone using the algorithm of ? 2 requires
 n3/6 + n2/2 - 2n/3 multiplicative operations.

 COROLLARY 5.3. Every ordering of M results in a bandwidth m = maxAij ? O - A
 satisfying m ? n.

 Proof. The Bi of Theorem 5.2 has a dense (n + 1) x (n + 1) submatrix, which
 means the bandwidth of Bi is at least n, which in turn implies the bandwidth of
 A is at least n.

 Corollary 5.3 indicates how unreliable bandwidth can be as a measure of
 computational complexity, since computation estimates based on bandwidth
 would suggest 0 must be at least 0(n4). It is interesting in this connection to observe
 that for our ordering, m -n-

 6. Concluding remarks. We have presented an ordering of a system of
 N = (n + 1)2 equations Ax = b derived from a regular n x n mesh and have
 shown that using the given ordering, A can always be factored in 0(n3) multiplica-
 tive operations, and the number of nonzero components in L is 0(n2 1og2 n).
 These results, combined with lower bounds of the same form due to Hoffman,
 Martin and Rose [6], leads us to conclude that our ordering is optimal in the order
 of magnitude sense (provided we use the algorithm described in ? 2) with respect
 to both 0 and ,.

 The class of matrices we have studied includes some well-known special

 cases, notably those which arise when the usual five-point or nine-point difference
 operator [3] is applied in connection with solving self-adjoint elliptic boundary
 value problems with rectangular domains. In certain special circumstances it is
 well known that systems with coefficient matrices having the structure of A can
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 be solved in 0(n3) or even 0(n2 1og2 n) operations [1], but these algorithms are
 special in the sense that they exploit the actual values of the components of A.

 However, if the matrix has no special characteristics other than being
 symmetric, positive definite, and having the zero-nonzero structure corresponding
 to M, then it has been assumed that factorization of A required 0(n4) operations
 and 0(n3) storage locations. (That is, the row by row ordering was used.) Since it
 can be shown that some iterative schemes, under suitable circumstances, will
 reduce the error in the solution of (1.1) below a specified tolerance in 0(n3)

 operations, it is often argued that iterative schemes are more efficient than direct
 methods for solving these sparse systems [2], [9] . We feel that Theorem 4.1 indicates
 that a re-comparison of direct and iterative methods is due. Of course, iterative
 schemes in general require much less storage than direct methods, even when
 we use our ordering, but the development of large memories and fast peripheral
 storage devices makes storage a less important factor than it has been in the past.

 The extension of our upper bound results to the regular unit cube mesh
 containing n3 cuboid elements is straightforward, although a little tedious. One
 now numbers sets of independent unknowns enclosed in increasingly large cubes
 rather than squares, finally numbering three intersecting planes of nodes, each
 pair having a common line of nodes, and the three having one common vertex
 at the centroid of the mesh. For this ordering of the mesh, 0 = 0(n6) and i1 = 0(n4).
 We have been unable to extend our lower bound proof to the three-dimensional
 problem.

 Another straightforward generalization of our results is the case where M has
 nodes on edges and in the interior of each element, and more than one unknown is

 associated with each node. The results are essentially unchanged, except for some
 adjustments in constants. See [4] for some results in this direction, for a slightly
 different ordering than the one presented here.

 A closely related matrix problem, arising in connection with the use of

 splines, has the property that grid points (unknowns) p and q are connected provided
 that the maximum difference in their x- and y-cordinates is bounded by some
 number d (which depends on the degree of the spline). We must now define our

 Pk's to consist of strips of horizontal and vertical grid lines, each strip consisting
 of d parallel grid lines. In this way nodes on opposite sides of a strip cannot be
 connected. We then proceed as before, obtaining 0 = 0(n3) and i = 0(n2 1og2 n).

 Finally, it should be obvious that our results apply even if A is unsymmetric,
 provided that its zero-nonzero structure is symmetric and we do not have to
 pivot during the decomposition to maintain numerical stability. Such matrix
 problems arise in connection with the use of finite element methods for solving
 non-self-adjoint elliptic boundary value problems. Depending on the way the
 problems are formulated, the matrix may or may not be symmetric, but the
 matrices always have symmetric structure. Furthermore, they are often diagonally

 dominant, which implies that pivoting for numerical stability is not required [10].

 Appendix. We now decribe in detail a particular ordering using the general
 strategy described in ? 4. We assume n = 21, and obtain sharp bounds for 0 and .

 Our numbering strategy is most easily described in terms of the mesh sequence

 Mi, i = 1, 2, . .. , N. Recall that numbering the first k nodes corresponds to
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 carrying out the first k steps of the elimination, which leaves us with a matrix Bk
 remaining to be factored which has structure represented by Mk. Within each

 set Pi, our numbering (elimination) strategy is to number (eliminate) the node
 (unknown) in Mk (Bk) which is connected to the fewest nodes (unknowns). When this
 strategy is used solely, it is known as the minimum degree algorithm. Here its

 application is restricted to the sequence of sets P1, P2, , P,. Since the subsets
 of Pi, 0 < i < 1, are independent, their relative numbering is immaterial. Therefore,
 we can apply the above strategy to each subset of Pi in turn, or apply it globally
 to the entire set Pi. In the example in Fig. A.1, we take the former course.

 It is convenient at this point to define a set P0 = {xijli,j = 0, n}, and redefine
 P1 to be P1 - P0. Then each subset of Pk, 0 < k < 1, consists of a "+ " shaped
 set of vertices, which we refer to as a hub with four spokes. (For k = 1, most of the
 spokes are null.)

 Now the application of the minimum degree strategy described above to
 each subset leads to a numbering best described by the diagrams in Figs. A.2, A.3

 and A.4, where the hashed lines indicate the boundary OR. The actual relative
 numbering on each edge is immaterial. The value of p is undetermined and not
 important here.

 Obviously, the number of nodes on the edges in Figs. A.2-A.4 depend on k.
 To distinguish between the three types of subsets, we refer to those depicted in
 Figs. A.2-A.4 as interior, boundary, and corner subsets respectively.

 We now make repeated use of Lemma 2.3 to compute 0 and il.

 LEMMA A.1. The contribution to 6 from the elimination of the unknowns in PO
 is 36, and the number of nonzeros in thefirst four columns of L is 12.

 81 83 173 85 231 87 178 89 265 91 184 93 242 95 190 98 97

 82 84 174 86 232 88 179 90 266 92 185 94 243 96 191 100 99

 171 172 176 175 233 181 182 183 267 187 188 189 244 196 195 193 192

 El: 72:] 177 73 234 74 180 75 268 76 186 77 245 78 194 80 79
 227 228 229 230 238 237 236 235 269 256 255 254 253 249 248 247 246

 61 62 152 63 239 64 157 65 270 66 162 67 252 68 168 70 69

 149 150 153 151 240 155 158 156 271 160 163 161 251 167 169 166 165

 51 52 154 53 241 54 159 55 272 56 164 57 250 58 170 60 59

 C273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 )
 41 42 130 43 250 44 135 45 264 46 140 47 226 - 148 146 50 49

 127 128 131 129 206 133 136 134 263 138 141 139 225 145 147 144 143

 31 32 132 33 207 34 137 35 262 36 142 37 224 38 148 40 39

 201 202 203 204 208 209 210 211 261 0 221 222 233 219 218 217 216

 21 22 105 23 200 24 110 25 260 26 116 27 215 28 126 30 29

 103 104 106 107 199 111 112 113 259 117 118 119 214 24 125 123 122

 3 4 102 6 198 8 109 10 258 12 115 14 213 16 121 20 19

 1 2 101 5 197 7 108 9 257 11 114 1 212 15 120 18 17

 FIG. A. 1. Detailed numbering of Mfor n = 16. The set P4 and some subsets of P1, P2 and P3 have been
 outlined.
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 I I | |_ _ I I __ __-_

 Mp Mp+2 k-l_I Mp+2k_2 Mp+3(2k_1)

 FIG. A.2. Mesh sequence corresponding to elimination of unknowns in a subset of Pk which has no

 nodes on OR

 MP Mp+2 k-I Mp+2k_1 Mp+2(2 k1)

 FIG. A.3. Mesh sequence corresponding to elimination of unknowns of a subset of Pk which has one

 node on OR

 Mp MMP+2k-' Mp+2k Mp+2k +1_I

 FIG. A.4. Mesh sequence corresponding to elimination of unknowns of a subset of Pk having two nodes

 on aR

 Proof. Obviously each corner node is connected to only 3 other unknowns,

 which means q = 1 and r = 3 in Lemma 2.3. Thus, the contribution to 0 is

 4. m(1, 3) = 36, and the contribution to q is 4 s(1, 3) = 12.
 LEMMA A.2. The contribution to Ofrom the elimination of interior subsets in Pk,

 O < k < 1- 1, is

 (A.1) k= n - 2) ( 23k _ 17 22k 22 2k + 3)

 and the number of nonzeros in the corresponding columns of L is

 (A.2) k= ( -n 2 2( - 13 2k + 3)

 Proof. First observe that there are (n/2k - 2)2 such interior subsets in Pk'

 0 < k < 1 - 1. The sets Po, PI -1 and P1 have none. The first two spokes eliminated
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 contribute m(2k- 1, 3 2k), since each spoke has 2k- 1 nodes on it, and the number of
 nodes not on the spoke but connected to unknowns on the spoke is 3 2k. Elimina-
 tion of the final two spokes and hub contributes m(2k - 1, 2k+2).

 Similarly, the storage required for the corresponding columns of L is
 2- s(2k-1 ,3 . 2k) + s(2k - 1,2 k+2). Expanding and simplifying these functions
 yields (A.1) and (A.2).

 LEMMA A.3. The contribution to Ofrom the elimination of unknowns in boundary
 subsets of Pk, 0 < k < 1 - 1, is

 (A.3) ok = 4(2 2 12 23 _ . 22-6 2 + 1,

 and the number of nonzeros in the corresponding columns of L is

 (A.4) = -n 2 .2k - 7 2k + 1

 Proof. Elimination of variables on the boundary spoke and the ones on the
 opposite spoke requires m(2k- 1,2k+1 + 1) and m(2k- _1, 3. 2k) operations
 respectively. The remaining variables require m(2k - 1, 3 2k + 1) operations.
 Using this, along with the fact that there are 4(n/2k - 2) boundary subsets in Pk,
 yields (A.3).

 Similarly, the number of nonzeros in the corresponding columns of L for
 each subset is

 s(2k-1,2k+1 + 1) + s(2kk-1 - 1, 3. 2k) + s(2k - 1, 3 2k + 1).

 Expanding, simplifying and multiplying by 4(n/2k - 2) yields (A.4). Note that
 Po, Pi- 1 and P1 have no boundary subsets.

 LEMMA A.4. The contribution to Ofrom the elimination of variables in thefour
 corner subsets of Pk, 0 < k < 1, is given by

 ok 125 3 k 34k (A.5) 6 = 1 * 2 + 18 2 - _ 2
 6 ~~~~~3

 and the number of nonzero components in the corresponding columns of L is

 (A.6) Ic = 18 2 - 8 2

 Proof. Elimination of variables of the first spoke contribute

 m(2k 1, 3. 2k-1 + 1)

 and s(2k- 1, 3* 2k-1 + 1) to 0 and q respectively. The second spoke contributes
 m(2k-1,2k+l + 1) and s(2k-1,2k+1 + 1) to 0 and q respectively. Finally, the
 remaining 2k 1 unknowns contribute m(2k -1,2k+1 + 1) operations and
 s(2-k , 2k+ 1 + 1) nonzeros respectively. The set P1 has no corner subsets.

 LEMMA A.5. The number of arithmetic operations required to eliminate the

 unknowns in PI is

 (A.7) ol = 23n3 + 7n2 + 5n,
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 and the number of nonzeros in the corresponding columns of L is

 (A.8) 5I = 4n2 + n.

 Proof. Elimination of the first two spokes requires 2 m(n/2, n + 1) operations.
 and the final n + 1 unknowns require m(n + 1, 0) operations. Similarly, the number
 of nonzeros is given by 2 * s(n/2, n + 1) + s(n + 1, 0).

 THEOREM A.6. The number of multiplicative operations required to factor the
 finite element matrix A associated with a regular n x n mesh, numbered as described
 above, and with n = 21, is given by

 (A.9) 0 =267n3 - 17n2 g2 n + 82487n2 + 0(nlog2 n),

 and the number of nonzero components in L is

 (A. 10) 5 = 913n2 log2 n -73 n2 + 24n log2 n + 0(n).

 Proof. The proof consists of merely summing the quantities given in Lemmas
 A.1-A.5 over the appropriate ranges. Normally, the algebra would be extremely
 tedious, but fortunately the author had access to the symbolic algebra system

 ALTRAN [5], so the quantities were summed by machine. The expansions of the
 m's and s's in the above lemmas were also checked by machine.

 Briefly, we compute

 1-1 1-2

 E k + E ( fk + ok
 k= 1 k=1

 and then add 0' for P, and 36 for PO yielding (A.9).
 Similarly, to obtain il we compute

 1-1 1-2

 z l + E (k _ - k
 k= 1 k=1

 and then add C' for P, and 12 for PO.
 Table A.1 compares 0 and C for this ordering with the corresponding values

 (0 and ~) which result when the natural row by row numbering scheme is used.

 TABLE A.1

 n N 0 0

 4 25 376 100 504 120

 8 81 3,172 572 4,496 720
 16 289 28,664 3,340 50,336 4,896
 32 1,089 257,036 18,828 669,792 36,459
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