
1 Architecture/Algorithm Interactions

• As we develop fast solution algorithms, it is important to understand the landscape
of the computer architectures to which they are to be mapped.

• Here, we consider single-core performance issues.

– We will also discuss distributed-memory multicore performance considerations
(e.g., communication overhead) throughout the course, where relevant.

• Most CPU cores today have multiple pipelined functional units (load, add, multiply,
etc.) that allow CPUs to produce one or more results per clock cycle, leading to
high performance potential.

• Unfortunately, the peak performance of modern processors is rarely realized in prac-
tice.

• There are two basic reasons for this situation. The first arises from difficulties in
scheduling operations to keep the pipelines and multiple fma (floating-point multiply-
add) units full.

• The second, and more serious, results from the fact that improvements in memory
access rates have not kept pace with CPU cycle times, making it difficult to keep
the CPUs from being data starved.



• The following points should be considered when developing code for modern archi-
tectures:

• reducing vector dependencies

• eliminating loop clutter

• increasing data reuse

• using unit-stride data accesses

• The first pair addresses the issue of pipelining, while the second focuses on memory
subsystem performance.

• While this list is by no means complete, these few basic concepts can easily affect
performance by an order-of-magnitude.



2 Pipelining

• Floating-point operations such as addition or multiplication typically require s=2–5
stages to produce a single result, with each stage requiring one clock cycle.

• As illustrated below, pipelined functional units allow s operations to be in progress
simultaneously, yielding one result per clock cycle.
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Pipelined execution of ci = ai + bi for an s-stage pipe.

Result c1 is ready as as+1 and bs+1 enter the pipe.

• In order to realize this potential s-fold increase in performance, the operands enter-
ing the pipe must not depend on partially completed results still in the pipe.

• Such dependencies arise, for example, in the the backward substitution phase of a
tridiagonal solve:

do i=n-1,1,-1

x(i) = (b(i) - u(i)*x(i+1))/d(i)

enddo

• Here, evaluation of x(i) must wait until the result x(i + 1) is complete.



• More subtle examples arise from ambiguous references, such as the following.

(1) do i=1,n

x(i+k) = c*x(i) + a(i)

enddo

(2) do i=1,n

x(ind(i)) = x(ind(i)) + a(i)

enddo

• In (1) the loop cannot be scheduled for pipelining unless the sign of k is known at
compile time.

• The same is true of (2) because ind(i) can potentially point to a dependent address.

• Other operations that inhibit pipelining in compute-intensive loops are subroutine
calls, function evaluations, nested loops, if statements, and I/O—all of which can
lead to ambiguous execution paths.

• In addition, unnecessary divides can significantly reduce performance on some ar-
chitectures.



• Finally, if the hardware is equipped with multiple function units, these are most
likely to come as multiply/add (fma) pairs.

– If the vector operation does not have an equal number of additions and multi-
plications, the performance will achieve only a fraction of the peak.

– For example, FFTs have twice as many additions as multiplications, so the mul-
tipliers will be idle at least half the time if both function units have the same
number of stages.

– Fortunately, linear algebra is dominated by operations with an equal number of
adds and multiplies.



3 Caches

• By adhering to basic vectorization principles, one should be able to achieve a signifi-
cant fraction of peak performance provided there is enough data to keep the processor
busy.

• This caveat is significant because processor and memory performance are on diver-
gent paths, with the former outpacing the latter for several decades. (e.g., [Hennesy
& Patterson]).

• One approach to mitigating the issue has been the development of caches, that is,
small amounts of fast memory between the processor and main memory.

– Most processors today feature at least a level-one (L1) cache that, under ideal
conditions, can provide data fast enough to keep the pipelines full.

– Some also feature larger L2 caches (and L3, and so on) that are somewhat slower
than L1 but still faster than main memory.

– Typically, data can be delivered at speed to the CPU only if it is already in L1
as a result of an earlier call.

– Data not in L1 must be loaded from a higher-level cache or main memory, then
passed to the CPU.

– This process, known as a cache miss, can take tens of clock cycles and severely
impact performance.



• The following loop will illustrate some basic features of cache behavior.

n = 0

for k=1:ntests

n = floor(1.2*(n+1));

run TEST(n) on $n$ data and return number of flops; % WARM-UP

t0 = tic;

for loop=1:nloop;

run TEST(n) on $n$ data and return number of flops

end;

time_elapsed(n) = toc(t0);

MFLOPS(n) = (nloop*flops)/time_elapsed(n)

end;

• The clock overhead is amortized by multiple calls to the TEST routine, and a single
call to TEST outside the timing loop avoids timing the initial load of data into cache.

• Here, TEST(n) is a any one of several mathematical kernels operating on vectors of
length n.

– In a few cases, we compile the code with optimization level O0 (the default), but
most are compiled using O3.

– There are additional optimizations one might consider, but that is not the ob-
jective here.

– This test is designed to understand performance for both cached and uncached
data, as both are relevant.

– It has a side benefit of giving some indication of cache sizes and of loop overhead
costs.



4 Cache Behavior

• Data will stay in cache until it is pushed out by other data whose address matches
the least-significant-bits of the resident data.

• Typical cache sizes today are 64KB for L1 and 256KB for L2.

• When an entry, ai, is loaded from memory, an entire cache line is pulled into L1 that
comprises ai and any neighboring elements that make up that cache line.

– cache-line sizes of 64 bytes (8 FP64 words) are typical.

• In this way, if ai+1 is used immediately after ai, it is likely to already be in cache.

• Such a scenario heavily favors unit-stride addressing.

• As we will see, main memory is much slower than the caches.



• The figure below illustrates the data situation for a 4KB cache at the end of TEST
in our experimental setup for different values of n.
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Figure 1: Status for data [x1 . . . xn] at the end of TEST: magenta–noncached; blue–cached.

• In the first two cases, data is cached after the warm-up call to TEST and ready for
the timing loop.

• In the last case, the first half of the loop will be slow because that data is noncached.

– Because the first half will push out initially the cached data, the second half will
also be slow.

– Data will then reside in L2 until n gets too large, at which point a similar sce-
nario plays out until all the data must come from main memory.

• The actual displacement may vary if the kernel operates on more than one n-vector.


