
CS556 Iterative Methods Fall 2024 Homework 2.
Due Tuesday, Sept. 24, 5 PM.

1a. Consider Au = f , where A is the n×n SPD matrix derived from the 2nd-order centered differ-

ence approximation to −∇2u = f with homogeneous Dirichlet conditions on the d-dimensional
unit cube, Ω = [0, 1]d. Assume a uniform spacing h = 1/(m + 1) in each direction (implying
n = md).

Suppose we use Jacobi iteration to solve this system, starting with u0 = 0,

uk = uk−1 + D−1(b − Auk−1),

where D =diag(aii) is the diagonal of A. The error propagator for this system is
E = (I −D−1A) and it has a spectral radius of the form

ρ(E) = 1 − ε,

with ε ∼ Cnk. Find C and k in this expression for d = 1, 2, and 3.∗

1b. Use the results

[ρ(E)]k ∼ (1− ε)k ∼ (e−ε)k ≈ 10−
εk
2

to derive an expression for the anticipated number of iterations for the relative error,
‖ek‖/‖u‖ ≤ 10−6 for each case, d = 1, 2, and 3. (For purposes of this assignment, you can
assume that the majority of the energy in the solution is in the most slowly decaying mode.)

2. Using material we’ve covered in class to date, complete the table below for the class of prob-
lems described in 1. Where possible, give the asymptotic constant or a close approximation,
rather than just O(nγ) for some particular γ. Use a relative error bound of ≈ 10−6 when
considering iterative methods.

Computational Complexities

Method 1D flops 1D storage 2D flops 2D storage 3D flops 3D storage
Banded Solver 8n 4n (LU)

Nested Diss.

Fast Diag. Meth.

FFT-based FDM

Jacobi Iteration

3. For each of the cases below, plot the requested data as symbols, not lines. Then, plot a line of
the form y = αnβ that goes through the set of observed data for the large values of n (where
we expect/hope that the asymptotic model holds).

∗Recall that ε ∼ Cnk implies that lim
n−→∞

ε = Cnk.
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3a. Solve the d-dimensional Poisson problems of the preceding question using Gaussian elimina-
tion.† Specifically, use a lexicographical ordering for the rows and columns of A. For example,
the vector of unknowns in the 3D case would be

[u1 u2 u3 · · · ul · · · un]T = [u111 u211 u311 · · · uijk · · · ummm]T . (1)

For the direct method, you will need to form A. The easiest way to do so is (e.g., in 3D) to
set A = I1⊗I1⊗A1 + I1⊗A1⊗I1 + A1⊗I1⊗I1, where I1 is the m×m identity matrix and
A1 is the standard tridiagonal SPD operator for the 1D Poisson problem. Make certain that
I1 and A1 are declared as sparse matrices so that the (very large) matrix A will also be sparse.

In matlab, the 3D A matrix can be formed as:

e=ones(m,1);

Ax=spdiags([e -2*e e], -1:1, m, m);

dx = 1./(m+1);

Ax = -Ax./(dx*dx); Ix = speye(m);

A2 = kron(Ix,Ax) + kron(Ax,Ix);

A = kron(Ix,A2) + kron(Ax,kron(Ix,Ix));

For d = 1, 2, and 3, consider a sequence of problem sizes, m = b2 k2 c, for k = 1, 2, 3,. . . ,kmax.
Measure the time t (seconds) required to compute the LU factorization of A for each (k, d)
pair and, for d = 1 plot t vs. n. In a different color, plot the results for d = 2 on the same
graph, and again use a third color to add the results for d = 3. For the 3D case, just use
m = 1, 2, 3, 4,. . . ,20, but go higher if you can, so that you can better understand the asymp-
totic behavior.

For each space dimension, take kmax to be large enough that n = 8000 or more. Note: I
suggest to not try to do all space dimensions in a single run because the required values of m
are quite different. Also, don’t take a very large value of kmax initially—work your way up to
tolerably large values until everything is working in your code. Most of the runtime ends up
being spent on the case k = kmax.

In matlab, the timing would look something like:

t0=tic; %% Warm-start

[L,U]=lu(A);

elapsed1(k) =toc(t0);

t0=tic; %% Actual time

[L,U]=lu(A);

elapsed2(k) =toc(t0);

mflops(k) = (flops/elapsed2)/1.e6;

disp([k m n elapsed1(k) elapsed2(k) mflops(k)])

The warm start is designed to preload L and U so that you’re not measuring overhead associ-
ated with memory allocation. The time you plot would be elapsed2(). Here, flops, would
be the estimated number of operations to perform the LU decomposition, from your table of
question 2.

†Note: to force the codes to solve the system without re-ordering, we will actually time the operation
LU=lu(A), rather than the time for solution of Au = b.
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3b. Solve the d-dimensional Poisson problems of the preceding question using Jacobi iteration. Set
the relative tolerance to tol = 10−6 and the maximum iteration count to imax = 106. Don’t
bother timing cases for any value of n > nfail, where nfail is the size of the first problem

where the relative residual norm is > tol after imax iterations. Make a plot similar to that for
3a, with time on the y axis and n on the x axis of a loglog plot. Add to this plot a plot of
iteration counts, using the same colors as for d = 1, 2 and 3, but a different symbol than used
for the timing.

3c. Solve the d-dimensional Poisson problems of the preceding question using the fast diagonaliza-
tion method (FDM). Make a similar plot with three graphs, one for each space dimension. I
suggest you form the scaled eigenvector matrix explicitly, rather than by calling eig(). As a
reminder, the 1D matrix of orthonormal eigenvectors can be generated as

i=[1:m]’;

ij=i*i’;

h = 1./(m+1);

scale = sqrt(2*h);

S = scale*sin(ij*(pi/(m+1));

Verify that this S satisfies two properties:

• STS = I

• STAS = Λ

where Λ is the matrix of eigenvalues, λk = 2
h2

(
1− cos πk

m+1

)
.

Note, one should nominally count the construction of S in the “solve” time. (Really, it’s part
of the “factor” time.) You may choose to do so, or you can leave it out. In the important 3D
case, the setup time for S is negligible, even for the general case where we must use eig() to
find the eigenvalues and eigenvectors.

4. Discuss the observations from your plots of question 3. Specifically,

• Do your observed timings match the expected complexity estimates of part 2?

• If not, what might be the cause for the discrepancy?

• Which solution strategy is fastest?

• How does dimensionality, d, play a role in choosing a solver?

Pay particular attention to the last of these questions.
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