
Welcome to CS556!

Goals of the Course

• To obtain working knowledge of sparse and dense matrices

• To build intuition of Krylov methods from a projection approach

• To build intuition of Krylov methods from an efficiency perspective

• To develop an understanding of multigrid to a research level

• To construct and test a working collection of solvers

• To establish a practical understanding of iterative and multigrid methods



By the end of the course, you will be able to

• understand, for a given system or situation, which solver options will be optimal or
nearly optimal

• estimate the performance difference for a variety of methods, so that you may choose
the fastest

• estimate development overhead

• estimate communication costs in a parallel setting

• understand vectorization consequences



Text

• Main text: Iterative Methods for Sparse Linear Systems, Second Edition, by Yousef
Saad.

• Supplement: Numerical Linear Algebra by Trefethen and Bau

• Supplement: Multigrid Tutorial by Briggs, Henson, McCormick

• Supplement: Iterative Methods by van der Vorst

• Course requirements: CS450

• Course knowledge: programming, basic numerical linear algebra, some numerical
PDEs



Assessment (tentative)

• Quizzes 15

• Homework 50

• Midterm Project 15

• Final Project 15

• Attendance and handouts 5

Quizzes should be done on your own.

Weekly/bi-weekly homeworks should be done in teams of 2 (same team for the full term).

The projects will involve presentations to the class in teams of 2.



TOPICS—tentative schedule

Week 1–2:

• Course Overview

• Introduction / Examples

– A first iterative example

– A second iterative example: 1D Poisson

– Grid-function evaluation as matrix-vector products

– Stencils

– Kronecker Product Introduction

• Gaussian elimination

– The Geometry of Linear Systems

– Full systems

– Block Methods

– Banded systems

• Saad Chapter 1, Linear Algebra Basics

– Norms

– Diagonally dominant matrices, irreducibly diagonally dominant

– M matrices

– Eigenvalues / eigenvectors / Schur form, etc.

– Projection: 1D / n-D



Week 2–3:

HPC considerations (Saad Chapter 11.2)

• Pipelined/vectorized arithmetic

• Memory hierarchies (caches)

• Interpretive languages

• Examples that slow performance

• Examples with high performance

Saad Chapter 2: Discretization of PDEs

• Finite differences

– Poisson / Helmholtz / Advection-diffusion 1D

– Poisson 2D

– Poisson 3D

– Eigenvalues

• Finite elements

– Poisson 2D / 3D

Direct Methods and the Curse of Dimensionality

Fast Poisson Solvers using Kronecker products



Week 4:

• Sparse Matrices

– Graph representations

– Sparse-matrix formats (CSR, etc.)

• Reordering and Sparse Direct Methods

– Minimum degree ordering

– Nested dissection ordering

– A-conjugacy of ND orderings

– Impact of reordering on matrix fill

Week 4–5: Basic Iterative Methods

• Jacobi, GS, SOR

• Jacobi vs GS: Poisson v. Advection-Diffusion

• Some convergence results

• ADI: Poisson / Helmholtz



Week 5-6: Projection Methods

Week 5: Conjugate Gradient Iteration

• Derivation and convergence rate

• Unpreconditioned variant

• Preconditioned variant (inc. Jacobi PCG example)

• Relationship to orthogonal polynomials

• Relationship to Steepest Descent

• Relationship to Lanczos iteration for eigenproblems

– e.g., solving f(A)x = b

• Flexible CG

Week 6: GMRES

• Full GMRES

• Restarted GMRES

• Flexible GMRES

• Left/Right preconditioning

• Alternatives to GMRES (Saad Chapter 7)



Week 7–11: Preconditioning

• Block Jacobi

• Overlapping Schwarz (additive/multiplicative)

• Multilevel Schwarz

• Substructuring

• ILU

Week 11–13: Multigrid

Remark. We will introduce many of the topics throughout the course with the intent
that the principal discussion and exploration of a given topic be covered in the proposed
timeline. The overall aim of the course is for students to be familiar with a broad range of
tools to efficiently solve large linear systems. Choosing the correct solver can save orders-
of-magnitude in computational costs, so coverage beyond iterative methods is important.
In particular, the choice of optimal preconditioning strategies warrants familiarity with
multiple solution algebra methods.



CS556 Introduction

• In this course we will primarily be interested in fast solvers for linear systems of the
form

Ax = b (1)

(or, often, Au = f).

• Specifically, we will be targeting very large n× n systems with n = 105–1010, where
A is generally sparse.



• In our context, A being sparse implies that the maximum (or average) number of
nonzeros per row is bounded, independent of n.

• The total number of nonzeros is thus ≤ Cn, for some relatively small constant C
(e.g., C . 5–50) and the work to solve the system is thus potentially O(n).

• Note that if A is a full n×n matrix with n2 nonzeros, then the best complexity that
one can hope for is O(n2) and, more generally, the complexity can be expected to
be O(n3) if one needs to resort to Gaussian elimination (a.k.a., direct factorization).

• Many iterative methods realize O(n) complexity for sparse matrices, which makes
them very attractive (i.e., fast) compared to direct methods whose complexity is
superlinear in n.

(It turns out that the work and storage for direct factorization of the preceding
tridiagonal matrix example is ≈ 8n operations and ≈ 4n storage, which is optimal
O(n) complexity with relatively low constants, so such systems are probably not
candidates for iterative methods.)

• A key criterion that dictates the choice of method is the “spatial dimen-
sion” of the governing PDE (at least for the classic discretizations of PDEs, but
there are similar conditions on more general graphs or sparse matrices).



• An example of a sparse system is the following tridiagonal system, which is a discrete
form of the 1D Poisson equation.

Au =
1

∆x2
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...

fn


. (2)

• Q: How many nonzeros per row?

• Q: What is the total storage required?

• Q: etc.



Two Important Ideas

• A key ingredient for iterative methods is to be able to effect matrix-vector products
in O(n) time (i.e., the number of operations is O(n) and the number of memory
references is O(n)).

• A second ingredient is to have a scheme that is rapidly convergent, so that the
number of iterations to reach a desired tolerance is bounded, independent of n
(and hopefully small).

We refer to this condition as order-independent convergence.

• Let’s look at a couple of examples, starting with the second idea.



• Consider the system (from Van der Vorst),

Ax =

 10 0 1
1
2 7 1
1 0 6

 x1

x2

x3

 =

 21
9
8

 . (3)

• If we perform one round of Gaussian elimination, we end up with the following
upper-triangular system,

 10 0 1
0 7 1− 1

20

0 0 6− 1
10

 x1

x2

x3

 =

 21
9− 21

20

8− 21
10

 , (4)

which, from backwards substitution, has the solution

x =

 x1

x2

x3

 =

 2
1
1

 . (5)



• In this particular case, the solution works out to “nice” integer values.

• But the overall process is somewhat cumbersome and error prone (for humans), es-
pecially for large systems.∗

• Gauss noted that, for diagonally dominant systems, one could easily approximate
the solution by ignoring the off-diagonal elements of the matrix, e.g.,

 10 0 1
1
2 7 1
1 0 6

 x1

x2

x3

 ≈
 10 0 0

0 7 0
0 0 6

 x̂1

x̂2

x̂3

 ≈
 21

9
8

 (6)

=⇒

 x̂1

x̂2

x̂3

 =

 2.1
9
7
8
6

 ≈
 2

1
1

 . (7)

∗Prof. Philip Davis at Brown University related that, during WWII, his wife was a “computor.” She could solve a 5 × 5 system in a
morning, but a 6 × 6 system would require a full day. This makes sense, since n3 = 125 when n = 5, but is 216 when n = 6. Other
authors report that an expert human could solve an 8 × 8 system in 8 hours. [Atanasoff, J. V., Computing Machine for the Solution
of Large Systems of Linear Algebraic Equations.]



• A critical observation about (7) is that the vector x̂ =
[
2.1 9

7
8
6

]
is close to the

actual solution, x.

• We denote the error as e := x− x̂ and the residual as

r = Ae = Ax − Ax̂ = b − Ax̂. (8)

• Note that the residual is computable, whereas the error is generally not because
that would be equivalent to knowing the solution.

• In test cases, however, we can of course (and do) compute the error in order to un-
derstand the behavior of the method.

• Key points about the residual are the following:

– r is computable.

– r is a measure of the error (the only one we have) and r = 0 when e = 0.

– r = Ae, always.



• From the relationship e := x− x̂ we have

x = x̂ + e. (9)

• So, if we could compute e, we would be able to find x.

• From the (computable!) residual, we have

Ae = r := b − Ax̂. (10)

So, here we have a new equation for the correction, e.



• As before, we can apply the diagonal approximation to A to generate an approxi-
mation to e, which we’ll denote as ê. 10 0 0

0 7 0
0 0 6

 ê1

ê2

ê3

 =

 21
9
8

 −
 10 0 1

1
2 7 1
1 0 6

 2.1
9
7
8
6

 = −

 0 0 1
1
2 0 1
1 0 0

 2.1
9
7
8
6

 .
That is,

Dê = b− Aê (11)

ˆ̂x = x̂ + ê, (12)

where D :=diag(A) is the diagonal matrix with entries aii.

• At this point, it becomes a bit tedious to continue by hand, so let’s look at some
example matlab (octave) code.

%% Matlab/OCTAVE SOURCE CODE: demo_jac1.m

hdr

xe = [2; 1; 1]; %% Exact solution

A = [ 10 0 1 ; %% Test matrix

.5 7 1 ;

1 0 6 ];

b = A*xe %% RHS

x=0*b; r=b; D=diag(diag(A));

for k=1:6; disp(’ ’)

%%% ALGORITHM

s=D\r; % Guess of current error

x=x+s; % x = x + D\(b-Ax)

r=r-A*s; % Update residual ( := b-Ax)

%%% DIAGNOSTICS

e=xe-x; % Error check for model problem

format short; disp([’iter = ’ num2str(k)])

format shorte; disp([ x e ])

end;

| >> demo_jac1

| b =

| 2.1000e+01

| 9.0000e+00

| 8.0000e+00

| iter = 1

| 2.1000e+00 -1.0000e-01

| 1.2857e+00 -2.8571e-01

| 1.3333e+00 -3.3333e-01

| iter = 2

| 1.9667e+00 3.3333e-02

| 9.4524e-01 5.4762e-02

| 9.8333e-01 1.6667e-02

| iter = 3

| 2.0017e+00 -1.6667e-03

| 1.0048e+00 -4.7619e-03

| 1.0056e+00 -5.5556e-03

| iter = 4

| 1.9994e+00 5.5556e-04

| 9.9909e-01 9.1270e-04

| 9.9972e-01 2.7778e-04

| iter = 5

| 2.0000e+00 -2.7778e-05

| 1.0001e+00 -7.9365e-05

| 1.0001e+00 -9.2593e-05

| iter = 6

| 2.0000e+00 9.2593e-06

| 9.9998e-01 1.5212e-05

| 1.0000e+00 4.6296e-06

• Note that the magnitude of e is reduced by almost a factor of 10 with each iteration.

• A principal concern throughout the term will be the rate of convergence:
How fast does e −→ 0?



1D Poisson Example

• As an example of the type of analysis to be covered this term we will consider Jacobi iteration
(i.e., fixed-point iteration with a diagonal preconditioner) to the system,

Au =
1

∆x2
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−1 2 −1

−1
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u1

u2
...

...

un


=



f1

f2
...

...

fn


. (13)

• With ∆x := L/N , N := n + 1, this system corresponds to a uniform-grid finite
difference (or linear finite element) discretization of the 1D Poisson problem,

−d
2ũ

dx2
= f(x), (14)

with Dirichlet boundary conditions, ũ(0) = ũ(L) = 0.

uj−1
uj

uj+1

0 =: x0 x1 x2 · · · xj−1 xj xj+1 · · · xN := L

Figure 1: Finite difference grid on Ω := [0, L] with grid-spacing ∆x = L/N .



• From a Taylor series about xj = j∆x, we have

−d
2ũ

dx2

∣∣∣∣
xj

= −ũj−1 − 2ũj + ũj+1

∆x2
+ O(∆x2) = f(xj). (15)

If we drop the O(∆x2) we can solve for uj ≈ ũ(xj) and (correctly) anticipate an
O(∆x2) error between the discrete solution, u = [u1 u2 . . . un]T , and its continuous
counterpart, ũ = [ũ(x1) ũ(x2) . . . ũ(xn)]T .

• With the boundary conditions u0 = 0 and un+1 = 0, applying (15) for j = 1, . . . , n
corresponds to each row of (13).

• Our focus here is on solving the linear system (13), rather than (14), per se.

• However, the required accuracy (i.e., ∆x2 < tol) does determine the size of the
system, n, and the total amount of work.



• Let’s begin with an analysis of the iteration error for Jacobi iteration applied to
Au = b.

• Consider the following iteration,

uk = uk−1 + D−1(b − Auk−1). (16)

• Starting with u0 = 0 and ek := u− uk, we have e0 = u, which is of course unknown.

• The important question is, What happens to the error as we execute this iteration?

• Let’s start by looking at demo jac1a.m.

– Here, we plot the exact solution (black), the current iterate, uk (blue), and the
error, ek = u− uk.

– In this case, the error exhibits a slowly decaying mode whos shape is roughly
independent of the initial error.



• We can derive an equation for the error by subtracting the iteration scheme from
the expression u = u. (Note that b− Au = 0.)

− uk = uk−1 + D−1(b −Auk−1)

+ u = u + D−1(b −Au)

ek = ek−1 + D−1(0 −Aek−1)

=
(
I − D−1A

)
ek−1 = E ek−1.

(17)

• Here, we have introduced the error propagator,

E := (I −D−1A), (18)

which is the matrix that governs the behavior of the error.

• In particular,

ek = E ek−1 = Ek e0 = Ek u. (19)

– Notice that D could be any invertible matrix, but that it should ideally have
two properties:

∗ It should be easy to invert (i.e., to solve Ds = r).

∗ It should be a close approximation to A.

– Regarding the latter point, its clear that if D = A then E = 0 and the error is
zero after just one iteration.

– Such a choice, however, would not buy us anything.

– The choice D =diag(A) (Jacobi iteration) is about the least expensive option
given that one can precompute the inverse entries of D so that each iteration
requires only pointwise multiplication of the residual when applying D−1.



• Are the expressions (16) and (19) convergent?

• How rapidly?

• Two ways to measure:

– vector/matrix norms

– eigenvalues

We will do both, but today we’ll start with eigenvalues, making simplifying assump-
tions where necessary.

• Suppose that E has a full set of linearly-independent eigenvectors, zj with associated
eigenvalues, λj:

Ezk = zkλk, Z = [z1 · · · zn] =⇒ Z−1 exists. (20)

• Consequently, for any u ∈ lRn,, we can find a vector û = [û1 . . . ûn]T ,

û := Z−1u (21)

such that

u =
n∑

j=1

ûjzj. (22)

• That is, the solution is a linear combination of the eigenvectors of E.

• We can assume that the eigenvectors are normalized to have unit norm, so that the
norm of u is related to the magnitude of the coefficients ûj.
(Only if the eigenvectors are orthogonal, zTi zj = δij, will we have ‖u‖ =

∑
j |ûj|

2 .
Every symmetric matrix has a full set of orthogonal eigenvectors, so this case is
rather common.)



• Given that e0 = u, we have

e0 = û1 z1 + û2 z2 + · · · + ûn zn (23)

e1 = Ee0 = û1λ1 z1 + û2λ2 z2 + · · · + ûnλn zn (24)

e2 = Ee1 = û1λ
2
1 z1 + û2λ

2
2 z2 + · · · + ûnλ

2
n zn (25)

ek = Eke0 = û1λ
k
1 z1 + û2λ

k
2 z2 + · · · + ûnλ

k
n zn (26)

• Clearly, if all |λj| < 1 the error will tend towards 0.

• Suppose |λn| > |λj|, j 6= n,

ek = λkn

[
ûn zn +

n−1∑
j=1

(
λj
λn

)k

ûj zj

]
(27)

• As k −→ ∞,

ek ∼ λkn (ûn zn + 0) . (28)

• We define the spectral radius of E as

ρ(E) = max
j
|λj| . (29)

• The fixed-point iteration will converge iff ρ(E) < 1.


