
Direct Solvers Review

• We present a brief overview of direct solvers, a.k.a., Gaussian Elimination (GE).

• These differ from iterative solvers in that they terminate in a finite number of
steps. (Technically, conjugate gradient iteration also terminates in a finite number
of steps—but we rarely need to take that many steps to have a converged solution.)

• We will see that direct solvers are advantageous for systems coming from low-
dimensional PDEs in lRd (i.e., d = 1 or 2), but generally not competitive for d > 2.
For d = 2, the winning approach is largely determined by the condition number of
the system matrix.

• Direct methods also form the basis for some preconditioning strategies known as ILU
methods, which are based on incomplete LU factorizations.

• We’ll start with GE for general (i.e., dense) matrices so that we internalize the central
ideas.
Key take-aways for this section:

– pivoting, for stability

– performance using block-based (BLAS3) algorithms

– performance gains for banded systems

• We’ll start with Gil Strang’s perspective on the geometry of linear systems.

• Consider the 6× 6 system,

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66





x1

x2

x3

x4

x5

x6

 =



b1

b2

b3

b4

b5

b6

 . (1)

• We can view A as a set of 6 column vectors, aj, j = 1 : 6,

| | | | | |
| | | | | || | | | | || | | | | |
a1 a2 a3 a4 a5 a6





x1

x2

x3

x4

x5

x6

 =



b1

b2

b3

b4

b5

b6

 . (2)

• The matrix-vector product, Ax, is a linear combination of the columns of A,
| | | | | |
| | | | | || | | | | || | | | | || | | | | |

x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6

 =



b1

b2

b3

b4

b5

b6

 . (3)

• The following notation is a bit more consistent.
| | | | | |
| | | | | || | | | | || | | | | || | | | | |

a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6

 =



b1

b2

b3

b4

b5

b6

 . (4)

• The unknowns to be found are the column coefficients, xj.

• This geometric column perspective, Find a linear combination of the vectors, aj, with
coefficients xj such that Ax = b, is quite distinct from the row perspective, which
views each equation as a describing a hyperplane of dimension n − 1 embedded in
lRn and seeking the intersection point of these n hyperplanes.

• A key idea in linear algebra that is central to iterative methods is that every matrix-
vector product is a linear combination of the columns of that matrix.

• Consider an m× n matrix, V . The matrix-vector product V y is

z = V y = v1y1 + v2y2 + · · · + vnyn. (5)

• Q: What can we say about the vector z in the following expression?

z = V (V TAV)−1V Ty (6)

A: We can say that z lies in the column space of V , which is also known as the
range of V , denoted as R(V).

That is, z is a linear combination of the columns of V . Always.

• We explore the implications of this fact in through geometric interpretations of linear
systems in the following examples.

The Geometry of Linear Equations1

• Example, 2× 2 system:

2x − y = 1

x + y = 5

}
⇐⇒

[
2 −1

1 1

] [
x

y

]
=

[
1

5

]

• Can look at this system by rows or columns.

• We will do both.

1Gilbert Strang: Linear Algebra and Its Applications

Row Form

• In the 2× 2 system, each equation represents a line:

2x − y = 1 line 1

x + y = 5 line 2

• The intersection of the two lines gives the unique point

(x, y) = (2, 3), which is the solution.

2x− y = 1

(0,−1)
x + y = 5

(0, 5)

(5, 0)

(x, y) = (2,3)

• We remark that the system is relatively ill-conditioned if the lines are close

to being parallel, that is, if the smallest subtended angle is close to 0.

Column Form

• The second (and more important) geometry is column based.

• Here, we view the system of equations as one vector equation:

Column form x

[
2

1

]
+ y

[
−1

1

]
=

[
1

5

]
.

• The problem is to find coefficients, x and y, such that the combination of

vectors on the left equals the vector on the right.

(2,1) = column 1

(4,2)

(−1, 1)

(−3, 3)

(1, 5) =
2 × (column 1)

+3 × (column 2)

• In this case, the system is ill-conditioned if the column vectors are nearly

parallel.

If these vectors are separated by an angle θ, it’s relatively easy to show that

the condition number scales as κ ∼ 2
θ as θ −→ 0.

Row Form: A Case with n=3.

2u + v + w = 5

Three planes: 4u − 6v = −2

−2u + 7v + 2w = 9

• Each equation (row) defines a plane in lR3.

• The first plane is 2u+ v +w = 5 and it contains points (5
2,0,0) and (0,5,0)

and (0,0,5).

• It is determined by three points, provided they do not lie on a line.

• Changing 5 to 10 would shift the plane to be parallel this one, with points

(5,0,0) and (0,10,0) and (0,0,10).

Row Form: A Case with n=3, cont’d.

• The second plane is 4u− 6v = −2.

• It is vertical because it can take on any w value.

• The intersection of this plane with the first is a line.

• The third plane, −2u + 7v + 2w = 9 intersects this line

at a point, (u, v, w) = (1, 1, 2), which is the solution.

• In n dimensions, the solution is the intersection point of n hyperplanes,

each of dimension n− 1. A bit confusing.

Column Vectors and Linear Combinations

• The preceding system in lR3 can be viewed as the vector equation

u

 2

4

−2

 + v

 1

−6

7

 + w

 1

0

2

 =

 5

−2

9

 = b.

• Our task is to find the multipliers, u, v, and w.

• The vector b is identified with the point (5,-2,9).

• We can view b as a list of numbers, a point, or an arrow.

• For n > 3, it’s probably best to view it as a list of numbers.

Vector Addition Example

 5

0

0

 +

 0

−2

0

 +

 0

0

9

 =

 5

−2

9

 .

 0
−2

0



 0
0
9



 5
0
0



b =

 5
−2

9



Linear Combination

1

 2

4

−2

 + 1

 1

−6

7

 + 2

 1

0

2

 =

 5

−2

9

 .

b =

 5
−2

9

  2
0
4

=2

 1
0
2



 2
4
−2

 +

 1
−6

7

 =

 3
−2

5



The Singular Case: Row Picture

2x− y = 1

(0,−1)

4x− 2y = −2

2x − y = 1

4x − 2y = −2

• No solution.

The Singular Case: Row Picture

2x− y = 14x− 2y = 2

(0,−1)

2x − y = 1

4x − 2y = 2

• Infinite number of solutions.

The Singular Case: Column Picture

b =

[
1

−2

]

x

[
2

4

]
+ y

[
−1

−2

]
=

[
1

−2

]

• No solution.

The Singular Case: Column Picture

b =

[
1

2

] x

[
2

4

]
+ y

[
−1

−2

]
=

[
1

−2

]

• Infinite number of solutions. (b coincident with a1 and a2.)

Singular Case: Row Picture with n=3

(a) two parallel planes (b) no intersection

(c) line of intersection (d) all planes parallel

End-on view of 3 planes.

Singular Case: Column Picture with n=3

O

b not in plane

O

b in plane

• In this case, the three columns of the

system matrix lie in the same plane.

Example: u

 1

2

3

 + v

 4

5

6

 + w

 7

8

9

 = b.

• On the left, b is not in the plane −→ no solution.

• On the right, b is in the plane −→ an inifnite number of solutions.

• Our system is solvable (we can get to any point in lR3) for any b

if the three columns are linearly independent.

Gaussian Elimination = LU Factorization

Triangular Solves Example

• Upper- or lower-triangular systems are straightforward to solve.

• Consider the following upper-triangular system governing the unknown, x = [x1 x2 x3]
T .

1 · x1 + 2 · x2 + 3 · x3 = 16

4 · x2 + 5 · x3 = 14

6 · x3 = 12

(7)

• To solve this, we use the well-known backward substitution approach of working from
the bottom equation (which is trivial) up to the first equation.

• From the bottom, we have

x3 = 12/6 = 2 . (8)

• Next up, we can find x2 as

4 · x2 = 14 − 5 · x3 = 14− 5 · 2 = 4, (9)

so x2 = 1.

• Finally, from the first equation, we have:

1 · x1 = 16 − 3 · x3 − 2 · x2 = 16 − 3 · 2 − 2 · 1 = 8. (10)

• Note that we can permute the rows of this system without changing the answer:

6 · x3 = 12

4 · x2 + 5 · x3 = 14

1 · x1 + 2 · x2 + 3 · x3 = 16

(11)

• We can also permute the columns:

6 · x3 = 12

5 · x3 + 4 · x2 = 14

3 · x3 + 2 · x2 + 1 · x1 = 16

(12)

Here, nothing has changed, save for the positions on the page.

• The equations and, hence the solution, are the same.
The solution process follows in precisely the same way as before.

• We conclude that solving a lower-triangular system is essentially the same as solving
an upper-triangular system.

One starts with the trivial entry, computes that value and subtracts a multiple of it
from the RHS for the next equation.

This process is repeated as each unknown (x3, x2, etc.) becomes known.

A More General Example

• For more general systems, the convention is to effect a sequence of transformations
such that the result is an equivalent upper triangular system.

• Because we work in finite-precision arithmetic, “equivalent” must be tempered by
the expectation that there will be round-off errors.

• Good (i.e., stable) algorithms, however, will mitigate these round-off errors to the
extent possible.

• In general, if the condition number of the system matrix is 10k, we can expect to
lose k digits of accuracy.

• For example, if we are working in FP64, we have 16 digits of accuracy in the repre-
sentation of most numbers. If the condition number of the system matrix is 105, we
can expect only 11 digits of accuracy in the final result.

• Q: For the same system, what accuracy should we expect if working in

• FP32?

• FP16?

• The transformation of a general matrix to upper triangular form is known as Gaus-
sian Elimination and it is equivalent to what is known as LU factorization.

• Equivalence-preserving operations used in Gaussian elimination include

• row interchanges

• column interchanges (relatively rare; used only for “full pivoting”)

• addition of a multiple of another row to a given row

Notice that we do not include “multiplication of a row by a constant” because, while
valid for any nonzero constant, it is generally not needed for Gaussian elimination.

• We have already seen how row/column interchanges can transform a system from
lower-triangular form to upper-triangular form and can understand that reversing
that procedure would take us back to our targeted upper-triangular form.

• Let’s now look at the row-addition process for a more general example.

Generating Upper Triangular Systems: LU Factorization

• Example: 

1 2 3

4 4 6 1

8 8 9 2

6 1 3 3

4 2 8 4





x1

x2

x3

x4

x5


=



0

4

4

4

4


• First column is already in upper triangular form.

• Eliminate second column:

row3 ←− row3 −
8

4
× row2

row4 ←− row4 −
6

4
× row2

row5 ←− row5 −
4

4
× row2



1 2 3

4 4 6 1

0 −3 0

−5 −6 3
2

−2 2 3





x1

x2

x3

x4

x5


=



0

4

−4

−2

0


• a22 = 4 is the pivot

• row2 is the pivot row

• l32 = 8
4 , l42 = 6

4 , l52 = 4
4 , is the multiplier column.

• Notice that neither row1 nor row2 is modified in this process.

– row1 is already in upper triangular form.

– row2 is the pivot row, which is unchanged.

Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):

1 2 3 0

4 4 6 1 4

8 8 9 2 4

6 1 3 3 4

4 2 8 4 4

 −→



1 2 3 0

4 4 6 1 4

0 −3 0 −4

−5 −6 3
2
−2

−2 2 3 0


This Case. General Case.

pivot = 4 = akk when zeroing the kth column.

pivot row = [4 6 1 | 4] = rTk = akj, j = k + 1, . . . , n [+ bk]

multiplier column =
1

4

 8

6

4

 = ck =
aik
akk

, i = k + 1, . . . , n

=

 2
3
2

1



Next Step: k = k + 1

• We now move to eliminate the next column, k = 3.

1 2 3 0

4 4 6 1 4

0 −3 0 −4

−5 −6 3
2
−2

−2 2 3 0


• Here, we have diffiulty because the nominal pivot, a33 is zero.

• The remedy is to exchange rows with one of the remaining two, since
the order of the equations is immaterial.

• For numerical stability, we choose the row that maximizes |aik|.
• This choice ensures that all entries in the multiplier column are less than

one in modulus.

• Q: From a performance standpoint, should we explicitly swap rows?
Or just use a pointer?

Next Step: k = k + 1

• After switching rows, we have

1 2 3 0

4 4 6 1 4

−5 −6 3
2
−2

0 −3 0 −4

−2 2 3 0

 −→



1 2 3 0

4 4 6 1 4

−5 −6 3
2
−2

0 −3 0 −4

0 42
5

22
5

4
5


pivot = −5

pivot row =

[
−6

3

2
| − 2

]

multiplier column =
1

−5

[
0

−2

]

Code for the general case, without pivoting:

As derived, in row form:

for k = 1 : min(m,n)

piv = akk

for i = k + 1 : m

aik = aik/piv

for j = k + 1 : n

aij = aij − aik ∗ akj
end

end

end

Better memory access (much faster):

for k = 1 : min(m,n)

piv = akk

for i = k + 1 : m % put multiplier column

aik = aik/piv % in lower part of A

end

for j = k + 1 : n % Ãk+1 = Ãk+1 − ck rTk
for i = k + 1 : m

aij = aij − aik ∗ akj
end

end

end

• Remarkably, L is now resident in the overwritten lower part of A.

• To retrieve L and U , we use the following:

l = min(m,n); L = zeros(m,l); U = zeros(l,n);

for k = 1 : l

L(k : end, k) = A(k : end, k); L(k, k) = 1;

U(k, k : end) = A(k, k : end);

end

Illustration of Basic Update Step:

@
@
@
@
@@

Uk

0 Ãk

︸ ︷︷ ︸
Ak

-

repartition

@
@

@
@

@@

Uk

0

ãkk

ck

rTk

Ãk+1

︸ ︷︷ ︸
Ak+1

• Ak is the reduced form of A at the start of step k.

• Ãk is the active submatrix Ak starting at row k, col k.

• After identifying the

pivot, akk

pivot row, rTk = ak:, and

multiplier column, ck = a:k/akk,

the rank-one update step reads:

Ãk+1 = Ãk+1 − ck r
T
k .

• The memory footprint of each successive submatrix is (n− 1)2, (n− 2)2, . . . 1.

• This matrix must be pulled into cache n− 1 times.

• The total number of memory references (of non-cached data) is ≈ 1
3n

3,
and the total work ≈ 2

3n
3 ops (one “+” and “*” for each submatrix entry).

• Recall that non-cached memory accesses slow (≈ 20×) compared to an fma.

• This observation suggests the idea of block factorizations that exploit BLAS3

matrix-matrix products.

• This is the essential difference between LinPack and LaPack, with the latter being
about 20× faster.

Illustration of Block-Update:

@
@
@
@
@@

Uk

0 Ãk

︸ ︷︷ ︸
Ak

-

repartition

@
@

@
@

@@

Uk

0

Akk

Ck

RT
k

Ãk+1

︸ ︷︷ ︸
Ak+1

• Here, Akk is a b× b block, where b ≈ 64 is the block size.

• In this case, the update step is

Ãk+1 = Ãk+1 − Ck A
−1
kkR

T
k .

• Since A−1
kk = (Lkk Ukk)

−1 = U−1
kk L

−1
kk , we can rewrite the update step as

RT
k = L−1

kk R
T
k

Ck = CkU
−1
kk

Ãk+1 = Ãk+1 − CkR
T
k .

• The advantage of the block strategy is that we reduce by a factor of b the number
of times that Ãk+1 is dragged into cache from main memory and that the principal
work, computation of CkR

T
k , is cast as a fast matrix-matrix product.

Matlab Code for LU, with and without Blocking:

function [L,U]=plu(A);

% Unpivoted LU factorization

m=size(A,1);

n=size(A,2);

K=min(m,n);

U=A(1:K,:);

L=zeros(m,K);

for k=1:K;

piv=U(k,k); %% pivot

row=U(k,k:end)’; %% pivot row

col=U(k+1:end,k)/piv; %% multiplier column

U(k+1:end,k:end) = U(k+1:end,k:end)-col*row’;

L(k+1:end,k) = col;

L(k,k) = 1;

end;

function [L,U]=blu(A,b);

% Unpivoted Block-LU factorization

% Blocksize = b

m=size(A,1);

n=size(A,2);

K=min(m,n);

U=A;

L=0*A;

for k=1:b:K; l=k+b-1; l=min(l,K);

P=U(k:l,k:l); [PL,PU] = plu(P); %% pivot

R=U(k:l,k+b:end); R=PL\R; %% pivot row

C=U(k+b:end,k:l); C=C/PU; %% multiplier column

U(k+b:end,k+b:end) = U(k+b:end,k+b:end) - C*R;

U(k:l,k+b:end) = R; U(k:l,k:l) = PU; U(k+b:end,k:l)=0;

L(k+b:end,k:l) = C; L(k:l,k:l) = PL;

end;

Figure 1: Time and GFLOPS for unblocked rank-1-based LU factorization (red) and blocked LU factorization with blockize
b = 64 (blue) vs. matrix size, n. For large n, there is a 40× difference in performance between Block-LU and Rank-1 LU.
The default Octave LU gains another factor of 5 for large n, and a factor of 70 for n < 100. The results show that the
dense-matrix factor times for n = 8192 are about 6 seconds for Octave when using multiple cores on an M1-based Macbook
Pro.

• Importantly, the number of operations is b(n − k)2 fma’s for the work-intensive
matrix-matrix products, while the number of memory references is only (n − k)2,
which yields a b-fold increase in computational intensity (the ratio of flops to bytes).

• For this reason, LU factorization of large matrices can often realize close to the
theoretical peak performance of a machine.

(Some argue that this so-called Linpack performance number, which is used to score
the machines in the Top 500 list, is inflated and artificial. Personally, I view it as an
existence proof. The counter-argument is that vendors focus solely on the Linpack
benchmark to the detriment of real applications.)

Banded Solves

• Banded system solves are common in PDE solvers and other systems where there is
multidimensional locality.

• Saad provides the following definition:

Banded matrices: aij 6= 0 only if i − ml ≤ j ≤ i + mu, where ml and mu are two
nonnegative integers.

The number ml +mu + 1 is called the bandwidth of A.

• Frequently, ml = mu, even if A is not symmetric.

• We will use b = mu = ml for the matrix bandwidth (or sometimes β), which is about
half the value used by Saad.

The figure below illustrates the data layout for a banded matrix with matrix bandwidth
b (=5, in this case).

• Red indicates LU factors already computed.

• Green indicates the pivot, pivot row, and multiplier column.

• Blue is the section that remains to be factored.

• And the red box indicates the current active submatrix.

• Q: Assuming that we don’t pivot, how much work is required to factor this banded
matrix?

• Pivoting can pull a row that has 2b nonzeros to the right of the diagonal up into the
pivot row.

• U can end up with bandwidth 2b.

• Pivoting can pull a row that has 2b nonzeros to the right of the diagonal up into the
pivot row.

• U can end up with bandwidth 2b.

• Pivoting can pull a row that has 2b nonzeros to the right of the diagonal up into the
pivot row.

• U can end up with bandwidth 2b.

• Questions to think about:

– What is the max storage required to solve a banded matrix with bandwidth b?

– What is the work to compute the LU factors?

– What is the work to solve the system, once L and U are known?

The solve is executed as:
Solve Ly = b
Solve Ux = y

– What is the cost of a tridiagonal solve?

