Direct Solvers Review

e We present a brief overview of direct solvers, a.k.a., Gaussian Elimination (GE).

e These differ from iterative solvers in that they terminate in a finite number of
steps. (Technically, conjugate gradient iteration also terminates in a finite number
of steps—but we rarely need to take that many steps to have a converged solution.)

e We will see that direct solvers are advantageous for systems coming from low-
dimensional PDEs in R? (i.e., d = 1 or 2), but generally not competitive for d > 2.
For d = 2, the winning approach is largely determined by the condition number of
the system matrix.

e Direct methods also form the basis for some preconditioning strategies known as ILU
methods, which are based on incomplete LU factorizations.

o We'll start with GE for general (i.e., dense) matrices so that we internalize the central
ideas.
Key take-aways for this section:
— pivoting, for stability
— performance using block-based (BLAS3) algorithms

— performance gains for banded systems

o We'll start with Gil Strang’s perspective on the geometry of linear systems.



e Consider the 6 x 6 system,

(a1 a2 a1z as ais ai| [x1] [b1]
21 A22 23 G24 Q25 (26 L2 bs
azr az2 azz Ga34 ass Ase T3] _ b3
41 Q42 A43 A44 Q45 Q46| | T4 by
as1 G52 Aas53 As54 As5 (56 L5 bs
A1 d62 A3 G4 Ae5 A66] [T6 [ b6 |

e We can view A as a set of 6 column vectors, a;, j =1:6,

_[El_ _bl_
) by
ay ay a3 ay a5 ag| [F3| _ 23
Xyq 4
x5 bs
| 6 2




e The matrix-vector product, Az, is a linear combination of the columns of A,

— - _bl

101+ T2as+ X303+ T4a4+ Ts5a5+ Telg| = . (3)

e The following notation is a bit more consistent.

- - by

a1+ Qoo+ A3z + GTa+ AsTs+ QL6 | = . (4)

e The unknowns to be found are the column coefficients, z;.

e This geometric column perspective, Find a linear combination of the vectors, a;, with
coefficients x; such that Az = b, is quite distinct from the row perspective, which
views each equation as a describing a hyperplane of dimension n — 1 embedded in
IR" and seeking the intersection point of these n hyperplanes.



e A key idea in linear algebra that is central to iterative methods is that every matriz-
vector product is a linear combination of the columns of that matrix.

e Consider an m X n matrix, V. The matrix-vector product Vy is

z = Vy =uy + 0+ + U (5)

e Q: What can we say about the vector z in the following expression?
z = V(VTAV)"'VvTy (6)

A: We can say that z lies in the column space of V', which is also known as the
range of V', denoted as R(V).

That is, z is a linear combination of the columns of V. Always.

e We explore the implications of this fact in through geometric interpretations of linear
systems in the following examples.



The Geometry of Linear Equations!
e Eixample, 2 X 2 system:
2 —y =1 2 —1 x| |1
rT+y =95 I 1 y| |5
e Can look at this system by rows or columns.

e We will do both.

LGilbert Strang: Linear Algebra and Its Applications



Row Form

e In the 2 x 2 system, each equation represents a line:
20 —y =1 line 1
rT+y =95 line 2

e The intersection of the two lines gives the unique point
(x,y) = (2,3), which is the solution.

20 —y =1

(z,y) = (2,3)

(5,0)

0.-1) N

/ xT+Yy=29

e We remark that the system is relatively ill-conditioned if the lines are close
to being parallel, that is, if the smallest subtended angle is close to 0.



Column Form

e The second (and more important) geometry is column based.

e Here, we view the system of equations as one vector equation:

2 —1 1
Column form x[1] —i—y[ 1] = [5]

e The problem is to find coefficients, x and y, such that the combination of
vectors on the left equals the vector on the right.

2 x (column 1)
~ +3 x (column 2)

(2,1) = column 1

e In this case, the system is #ll-conditioned if the column vectors are nearly
parallel.

If these vectors are separated by an angle 6, it’s relatively easy to show that
the condition number scales as k ~ % as 0 — 0.



Row Form: A Case with n=3.

2u+ v+ w = 29
Three planes: du — 6o = —2
—2u + T+ 2w = 9

e BEach equation (row) defines a plane in R?.

e The first plane is 2u + v + w = 5 and it contains points (g,0,0) and (0,5,0)
and (0,0,5).

e [t is determined by three points, provided they do not lie on a line.

e Changing 5 to 10 would shift the plane to be parallel this one, with points
(5,0,0) and (0,10,0) and (0,0,10).



Row Form: A Case with n=3, cont’d.

e The second plane is 4u — 6v = —2.

e It is vertical because it can take on any w value.

e The intersection of this plane with the first is a line.

e The third plane, —2u 4 7v 4+ 2w = 9 intersects this line

at a point, (u,v,w) = (1, 1,2), which is the solution.

e In n dimensions, the solution is the intersection point of n hyperplanes,
each of dimension n — 1. A bit confusing.



Column Vectors and Linear Combinations

e The preceding system in R? can be viewed as the vector equation

2 1 1 5
U 41 +v| -6 +w|0] = |-=2] =0
—2 7 2 9

e Our task is to find the multipliers, u, v, and w.
e The vector b is identified with the point (5,-2,9).
e We can view b as a list of numbers, a point, or an arrow.

e For n > 3, it’s probably best to view it as a list of numbers.



Vector Addition Example




Linear Combination

1( 4] +1| 6] +2]0]| = | -2




The Singular Case: Row Picture

20 —

=1

e No solution.

20 —
dr — 2y



The Singular Case: Row Picture

flx—?y:Q 20—y =1

2r — vy
dor — 2y

0.1y

e Infinite number of solutions.



The Singular Case: Column Picture

e No solution.



The Singular Case: Column Picture

e Infinite number of solutions. (b coincident with a; and a,.)



Singular Case: Row Picture with n=3

A X

) two parallel planes (b) no intersection
¢) line of intersection (d) all planes parallel

End-on view of 3 planes.



Singular Case: Column Picture with n=3

b not in plane b in plane
o b

e In this case, the three columns of the
system matrix lie in the same plane.

Example: u

W N =
—+
e
S Ot W
+
S
© 00
|
|

e On the left, b is not in the plane — no solution.
e On the right, b is in the plane — an inifnite number of solutions.

e Our system is solvable (we can get to any point in ]R?’) for any b
if the three columns are linearly independent.



Gaussian Elimination = LU Factorization



Triangular Solves Example

e Upper- or lower-triangular systems are straightforward to solve.

e Consider the following upper-triangular system governing the unknown, z = [z; z2 3]7.

l-xy + 229 + 3-23 = 16
6 - Ty = 12
e To solve this, we use the well-known backward substitution approach of working from

the bottom equation (which is trivial) up to the first equation.

e From the bottom, we have

zy = 12/6= 2. (8)

e Next up, we can find 5 as
4-29 = 14 — 5-23 = 14—-5-2 = 4, 9)

so 9 = 1.

e Finally, from the first equation, we have:

l-2; = 16 — 3-23 — 2-25 = 16 — 3-2 — 2.1 = 8, (10)



e Note that we can permute the rows of this system without changing the answer:
6-x3 = 12
4-29 + d-23 = 14 (11)
l-xy + 229 + 3-23 = 16

e We can also permute the columns:
6 - x3 = 12
5-x3 + 419 = 14 (12)
3-x3 + 2-29 + 1-2¢ = 16

Here, nothing has changed, save for the positions on the page.

e The equations and, hence the solution, are the same.
The solution process follows in precisely the same way as before.

e We conclude that solving a lower-triangular system is essentially the same as solving
an upper-triangular system.

One starts with the trivial entry, computes that value and subtracts a multiple of it
from the RHS for the next equation.

This process is repeated as each unknown (x3, zo, etc.) becomes known.



A More General Example

e For more general systems, the convention is to effect a sequence of transformations
such that the result is an equivalent upper triangular system.

e Because we work in finite-precision arithmetic, “equivalent” must be tempered by
the expectation that there will be round-off errors.

e Good (i.e., stable) algorithms, however, will mitigate these round-off errors to the
extent possible.

e In general, if the condition number of the system matrix is 10*, we can expect to
lose k digits of accuracy.

e For example, if we are working in FP64, we have 16 digits of accuracy in the repre-
sentation of most numbers. If the condition number of the system matrix is 10°, we
can expect only 11 digits of accuracy in the final result.

e Q: For the same system, what accuracy should we expect if working in

o FP327
e FP167



e The transformation of a general matrix to upper triangular form is known as Gaus-
sian Elimination and it is equivalent to what is known as LU factorization.

e Equivalence-preserving operations used in Gaussian elimination include

e row interchanges
e column interchanges (relatively rare; used only for “full pivoting”)
e addition of a multiple of another row to a given row

Notice that we do not include “multiplication of a row by a constant” because, while
valid for any nonzero constant, it is generally not needed for Gaussian elimination.

e We have already seen how row/column interchanges can transform a system from
lower-triangular form to upper-triangular form and can understand that reversing
that procedure would take us back to our targeted upper-triangular form.

e Let’s now look at the row-addition process for a more general example.



Generating Upper Triangular Systems: LU Factorization

e Example:

=~ O 00 = N
N = 00 B W

I
T2
T3
T4

L5

e First column is already in upper triangular form.

e Eliminate second column:

rowsg <— TIOwW3 —

rowy <— TI0OWy4 —

1~ =] =]00

rOows <— TIOwWy —

® a9y = 4 is the pivot

e roW> is the pivot row

X TOW9

X X
= =
Q Q
= =
) )

° 3 = %, lyp = %, 50 = %, is the multiplier column.

e Notice that neither row; nor rows is modified in this process.

— row; is already in upper triangular form.

— rowy is the pivot row, which is unchanged.

A~ kR e e O

W Ml O =

Ty
X2
I3
T4

x5




Generating Upper Triangular Systems: LU Factorization

e Augmented form. Store bin A(:,n + 1):

1 2 3 0
4 4 6 1|4
8 8 9 2|14
6 1 3 3|4
| 4 2 8 4| 4
This Case.
pivot = 4
pivotrow = [ 4 6 1]4]
[ 8
1
multiplier column = 1 6
4

_ NI DN

12 3 0]
4 4 6 1| 4
0 -3 0|4

-5 —6 3|-2

i -2 2 3| 0]

General Case.

= ay, when zeroing the kth column.

:ffzakj,j:k+1,,n[+bk]
a; .

= ¢ = k,z:k—i—l,...,n
ALk



Next Step: k=k+1

e We now move to eliminate the next column, k = 3.

12 3 0]
4 4 6 1| 4
0 -3 0|—4

-5 —6 3| -2

i -2 2 3| 0]

Here, we have diffiulty because the nominal pivot, ass is zero.

The remedy is to exchange rows with one of the remaining two, since
the order of the equations is immaterial.

e For numerical stability, we choose the row that maximizes |a;|.

This choice ensures that all entries in the multiplier column are less than
one in modulus.

Q: From a performance standpoint, should we explicitly swap rows?
Or just use a pointer?



e After switching rows, we have

1 2 3
4 4

pivot = -5

pivot row = {—6

multiplier column = — [

Next Step: k =k + 1

07 1 2
6 1| 4 4
—6 % —2 —
-3 0] -4
2 3, 0 |
-]

01
1] 4
3

31 9
0| —4
2 4
5105



Code for the general case, without pivoting:

As derived, in row form: Better memory access (much faster):

for k =1 : min(m,n) for k =1 : min(m,n)

piv = kg PV = Qg
fori=k+1:m fori=k+1:m % put multiplier column
ag, = a;/piv a; = ai/piv - % in lower part of A
forj=k+1:n end
Qij = Qi — Qi * Qgj for j=k+1:n % A1 = Ak ¢ T
end fori=k+1:m
end Q5 = Q5 — Qg * Qg
end end
end
end

e Remarkably, L is now resident in the overwritten lower part of A.

e To retrieve L and U, we use the following:

[ = min(m,n); L = zeros(m,l); U = zeros(l,n);
fork=1:1
L(k:end, k) = A(k : end, k); L(k, k) =1;
Uk, k:end) = A(k, k : end);
end



Illustration of Basic Update Step:

Uk Uk

~ T

agg| Ty
—_—
Tk repartition

0 A 0 Sk _

Ak—i—l
Ay Aps1

e A, is the reduced form of A at the start of step k.
o A is the active submatrix A* starting at row k, col k.

e After identifying the

inOt7 ALtk
pivot row, f% = ay., and

multiplier column, ¢, = a.;/ag,
the rank-one update step reads:

Akj—|—1 _ Ak—i—l . Qk££~

e The memory footprint of each successive submatrix is (n — 1)?, (n — 2)%, ... 1.

e This matrix must be pulled into cache n — 1 times.

e The total number of memory references (of non-cached data) is ~ in?,

3
and the total work ~ 2n® ops (one “+” and “*” for each submatrix entry).
e Recall that non-cached memory accesses slow (= 20x) compared to an fma.

e This observation suggests the idea of block factorizations that exploit BLAS3
matrix-matrix products.

e This is the essential difference between LinPack and LaPack, with the latter being
about 20x faster.



Illustration of Block-Update:

U* U*
T
—_—
0 121 k repartition 0 Ck; )
Ak—i—l
Ay Apy1

e Here, Ay is a b x b block, where b = 64 is the block size.

e In this case, the update step is

Ak—l—l _ Ak—i—l . Ck A];kle
e Since A;;kl = (L Upe) ™t = Uk;} L,;,i, we can rewrite the update step as
T 1 T
Ry = kal Ry,
Ch. = CkU];ﬂl
A = AR R

e The advantage of the block strategy is that we reduce by a factor of b the number
of times that A**! is dragged into cache from main memory and that the principal
work, computation of Cy, RY, is cast as a fast matrix-matrix product.



Matlab Code for LU, with and without Blocking:

function [L,U]=plu(A);

% Unpivoted LU factorization
m=size(A,1);

n=size(A,2);

K=min(m,n);

U=A(1:K,:);
L=zeros(m,K) ;

for k=1:K;
piv=U(k,k); %h pivot
row=U(k,k:end) ’; %% pivot row

col=U(k+1:end,k)/piv; %% multiplier column
U(k+1:end,k:end) = U(k+1l:end,k:end)-col*row’;

L(k+1:end,k) = col;
L(k,k) = 1;

end;

function [L,U]l=blu(A,b);

% Unpivoted Block-LU factorization
% Blocksize = b

m=size(A,1);
n=size(A,2);

K=min(m,n);

U=A;
L=0%A;

for k=1:b:K; 1=k+b-1; 1=min(1,K);

P=U(k:1,k:1); [PL,PU] = plu(P); %k pivot

R=U(k:1,k+b:end); R=PL\R;
C=U(k+b:end,k:1); C=C/PU;

%% pivot row
%% multiplier column

U(k+b:end,k+b:end) = U(k+b:end,k+b:end) - C*R;

U(k:1,k+b:end)
L(k+b:end,k:1)

R; U(k:1,k:1)
C; L(k:1,k:1)

end;

PU; U(k+b:end,k:1)=0;
PL;



LU Factorization with Blocksize = 64 LU Factorization with Blocksize = 64

10° 10°
1L
10 102 b
10° ¢
Y 10" ¢
2 0
9 107 ¢ o
3 9 1o°
@ 102} 6
£
[ 107
10° ¢
Block LU Block LU
2l
104 + Rank-1LU | 10 Rank-1 LU
s Octave LU = Qctave LU
10-5 L 103 I |
10! 102 108 104 10 102 10° 10%
Matrix Size, n Matrix Size, n

Figure 1: Time and GFLOPS for unblocked rank-1-based LU factorization (red) and blocked LU factorization with blockize
b = 64 (blue) vs. matrix size, n. For large n, there is a 40x difference in performance between Block-LU and Rank-1 LU.
The default Octave LU gains another factor of 5 for large n, and a factor of 70 for n < 100. The results show that the

dense-matrix factor times for n = 8192 are about 6 seconds for Octave when using multiple cores on an M1-based Macbook
Pro.



e Importantly, the number of operations is b(n — k)* fma’s for the work-intensive
matrix-matrix products, while the number of memory references is only (n — k)2,
which yields a b-fold increase in computational intensity (the ratio of flops to bytes).

e For this reason, LU factorization of large matrices can often realize close to the
theoretical peak performance of a machine.

(Some argue that this so-called Linpack performance number, which is used to score
the machines in the Top 500 list, is inflated and artificial. Personally, I view it as an
existence proof. The counter-argument is that vendors focus solely on the Linpack
benchmark to the detriment of real applications.)



Banded Solves

e Banded system solves are common in PDE solvers and other systems where there is
multidimensional locality.

e Saad provides the following definition:

Banded matrices: a;; # 0 only if « — my < j < ¢+ m,, where m; and m,, are two
nonnegative integers.

The number m; + m, + 1 is called the bandwidth of A.

e Frequently, m; = m,, even if A is not symmetric.

e We will use b = m,, = my for the matrix bandwidth (or sometimes (), which is about
half the value used by Saad.



The figure below illustrates the data layout for a banded matrix with matrix bandwidth
b (=5, in this case).

e Red indicates LU factors already computed.

e Green indicates the pivot, pivot row, and multiplier column.
e Blue is the section that remains to be factored.

e And the red box indicates the current active submatrix.

e Q: Assuming that we don’t pivot, how much work is required to factor this banded
matrix?



e Pivoting can pull a row that has 2b nonzeros to the right of the diagonal up into the
pivot row.

e U can end up with bandwidth 2b.

0




e Pivoting can pull a row that has 2b nonzeros to the right of the diagonal up into the
pivot row.

e U can end up with bandwidth 2b.

-----------
ooooooooooo
-----------
-----------
200 s s s e e e 2 e e e 0 B
ooooooooooo
ooooooooooo
-----------
-----------
2+ e e s & & & 8 s s s s
oooooooooo
---------
--------

30 e e e s e e




e Pivoting can pull a row that has 2b nonzeros to the right of the diagonal up into the
pivot row.

e U can end up with bandwidth 2b.

0

aaaaaa

ooooooo

‘‘‘‘‘‘‘
ooooooooo

¢¢¢¢¢¢¢¢¢¢¢

ooooo

20

25

ccccc

30

yyyyy

oooooo

e Questions to think about:

— What is the max storage required to solve a banded matrix with bandwidth b7

— What is the work to compute the LU factors?

— What is the work to solve the system, once L and U are known?
The solve is executed as:
Solve L
Solve

b
Y

z

— What is the cost of a tridiagonal solve?



