
1 Poisson Equation

Our first boundary value problem will be the steady-state heat equation, which in two dimensions has the
form

−
(
∂

∂x
k
∂T

∂x
+

∂

∂y
k
∂T

∂y

)
= q′′′(x), plus BCs. (1)

If the thermal conductivity k > 0 is constant, we can pull it outside of the partial derivatives and divide
both sides by k to yield the 2D Poisson equation

−
(
∂2ũ

∂x2
+
∂2ũ

∂y2

)
= f(x), plus BCs. (2)

with f := q′′′/k and ũ := T . (We typically use u for scalar fields throughout the course for notational
convenience.)

The short-hand notation for the Poisson equation (2) is

−∇2ũ = f(x) in Ω, ũ = ũb on ∂ΩD, ∇ũ · n̂ = g on ∂ΩN ,

which applies in any number of space dimensions d. Here, we’ve indicated a mixture of boundary conditions:
Dirichlet on ∂ΩD, where u is prescribed, and Neumann on ∂ΩN , where the normal component of the gradient
is prescribed. We take n̂ to be the outward pointing normal on the domain boundary ∂Ω = ∂ΩD

⋃
∂ΩN .

We will work with the Poisson equation and extensions throughout the course. At this point we want
to introduce some simple cases in order to understand optimal solution strategies in the 3D case, which is
arguably the most important in terms of compute cycles consumed throughout the world.

1.1 Finite Differences in 1D

The basic idea behind the finite difference approach to solving differential equations is to replace the differ-
ential operator with difference operators at a set of n gridpoints. In 1D, it is natural to order the points
sequentially, as illustrated in Fig. 1. Here, we consider the two-point boundary value problem

−d
2ũ

dx2
= f(x), ũ(0) = ũ(1) = 0. (3)

uj−1
uj

uj+1

0 =: x0 x1 x2 · · · xj−1 xj xj+1 · · · xN := L

Figure 1: Finite difference grid on Ω := [0, L] with grid-spacing ∆x = L/N .

1

We use the second-order centered difference approximation to the second derivative, which for uniform grid
spacing xj − xj−1 = ∆x = L/(n+ 1) is,

− ũj+1 − 2ũj + ũj−1

∆x2
= −

(
d2ũ

dx2

∣∣∣∣
xj

+
∆x2

12

d4ũ

dx4

∣∣∣∣
xj

+O(∆x4)

)
(4)

= f(xj)−
∆x2

12

d4ũ

dx4

∣∣∣∣
xj

−O(∆x4) (5)

≈ f(xj). (6)

Note that (4)–(6) comprises three steps. First, we use the Taylor series expansion to express our difference
formula in terms of the desired derivative plus higher-order corrections. Second, we use the differential
equation to replace the desired derivative by the data (fj := f(xj)). Finally, we incur truncation error by
dropping the higher-order terms in the Taylor series. We equate the results to arrive at a discete system for
the numerical approximation, uj ,

−uj+1 − 2uj + uj−1

∆x2
= fj , j = 1, . . . , n. (7)

The set of equations (7) represents our discretization of the original differential equation and is an
algebraic system consisting of n equations in n unknowns, uj , j=1,. . . ,n. Each equation j relates uj−1, uj ,
and uj+1 to fj . For this reason, the resulting matrix system is tridiagonal,

1

∆x2

2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

︸ ︷︷ ︸

Ax

u1

u2

...

...
un

︸ ︷︷ ︸

u

=

f1

f2

...

...
fn

︸ ︷︷ ︸

f

, (8)

which has the shorthand Axu = f , where u is the vector of unknowns and f the vector of data values, as
indicated in (8). Note that, because we have two Dirichlet conditions, we have n = (N + 1) − 2 = N − 1
unknowns. We will often simply use A (or, sometimes Â) instead of Ax for notational convenience. Here,
we explicitly call out the x-coordinate association in preparation for the 2D development coming in the next
section.

2

We list several attributes of A = Ax that carry over to higher space dimensions.

• A is symmetric, which implies it has real eigenvalues and an orthonormal set of eigenvectors satisfying
Asj = λjsj , s

T
j si = δij , where the Kronecker δij equals 1 when i = j and 0 when i 6= j.

• A is also positive definite, which means that xTAx > 0 for all x 6= 0. It also implies λj > 0. Symmetric
positive definite (SPD) systems are particularly attractive because they can be solved without pivoting
using Cholesky factorization, A = LLT , or iteratively using preconditioned conjugate gradient (PCG)
iteration. (For large sparse systems in space dimension d ≥ 3, PCG is typically the best option.)

• A is sparse. It has a fixed maximal number of nonzeros per row (3, in the case of Ax), which implies
that the total number of nonzeros in A is linear in the problem size, n. We say that the storage cost
for A is O(n), meaning that there exists a constant C independent of n such that the total number of
words to be stored is < Cn.

• A is banded with bandwidth w = 1, which implies that aij = 0 for all |i − j| > w. A consequence
is that the storage bound for the Cholesky factor L is < (w + 1)n. For the 1D case with w=1, the
storage for L is thus O(n). As we shall see, the work to compute the factors is O(w2n).

• A−1 is completely full. We know this from the physics of the problem. Consider f ≡ 0 save for one
point, where fj = 1 (i.e., fj is the nth column of the n× n identity matrix). This case corresponds to
a point heat source at xj and, as we know, the temperature will be nonzero everywhere except at the
endpoints. In fact, it will exhibit a linear decay from xj to the boundaries. This is the exact Green’s
function for both the continuous and the discrete case. It’s an easy exercise to show that, for any
matrix A = (a1 a2 . . . an) we have aj = Aej when ej is the jth column of I. The preceding arguments

establish that A−1 must be completely full.

3

1.2 Eigenvalues in lR1

One of the most attractive features of (constant coefficient, uniformly-spaced) finite differences is that we
have closed-form expressions for their eigenfunctions and eigenvalues. To start, we return to our original
BVP (3) and consider the associated eigenvalue problem,

−d
2ũ

dx2
= λ̃ũ(x), ũ(0) = ũ(L) = 0. (9)

The solutions to (9) are ũ = sin kπx/L and the eigenvalues are λ̃k = k2π2/L2.

The discrete counterpart to (9) is

Au = λu. (10)

Remarkably, the eigenvectors for the finite difference (and linear finite element) method with uniform grid
spacing are the same as their continuous counterparts. That is, they are sine functions with wavenumber k.
If we denote the kth eigenvector of A by zk, then its jth component is

(zk)j = sin kπxj/L, xj = j∆x = jL/(n+ 1). (11)

To find the associated eigenvalues, we apply A to zk. Let u = zk and w = Au. Then

wj = −uj+1 − 2uj + uj−1

∆x2
(12)

= − 1

∆x2
[sin(kπxj+1/L)− 2 sin(kπxj/L) + sin(kπxj−1/L)] .

At this point, we invoke a trigonometric identity,

sin(a+ b) + sin(a− b) = 2 sin(a) cos(b), (13)

and note that xj±1 = xj ±∆x. Using these two results (12) becomes,

wj = − 1

∆x2
[2 sin(kπxj/L) cos(kπ∆x/L)− 2 sin(kπxj/L)] (14)

=
2

∆x2
[1− cos(kπ∆x/L)] sin(kπxj/L)

=
2

∆x2
[1− cos(kπ∆x/L)]uj

= λk uj .

We have thus established that the eigenvalues of A for the 1D case are

λk =
2

∆x2
[1− cos(kπ∆x/L)] (15)

=
2

∆x2
[1− cos(πk/N)]

=
4

∆x2
sin2(πk/2N)

Like their continuous counterpart, the discrete eigenvalues λk are positive, which implies that A is positive
definite.

4

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

Eigenvalues for 1D Poisson Problem (N=20)

Wavenumber: k

E
ig

en
va

lu
es

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Green’s Functions for 1D Poisson Problem

s/L

G
(x

,s
)/

L

x=.3
x=.5
x=.8
G(s,s)

λ̃k

λk

Figure 2: Left: eigenvalues for the continuous and discrete problems (9) and (10). Right: Green’s
functions (76) for several values of x. The dashed curve is the locus of Green’s function maxima.

We are typically interested in the extreme ends of the spectrum, that is, the smallest and largest (in mag-
nitude) eigenvalues. For small values of k∆x, we have λk = λ̃k + O(k2∆x2) as can be seen from a Taylor
series expansion for (15).

λk =
2

∆x2

[
1−

(
1− k2π2∆x2

2!L2
+
k4π4∆x4

4!L4
+ h.o.t.

)]
(16)

=
k2π2

L2

(
1− π2(k∆x)2

12L2
+ h.o.t.

)
.

The smaller eigenvalues (k∆x � L) are quite close to their physical counterparts, k2π2/L2. On the other
hand, as k −→ n, we have from (15) λk −→ 4/∆x2 = 4N2/L2 and λ̃k −→ π2n2. In summary, for low
wavenumbers k, we have

λk ∼ λ̃k = k2π2/L2. (17)

For large wavenumbers, we have λk ∼ 4/∆x2 ∼ 4n2/L2. We plot λ̃k and λk in Fig. 2. We remark that the
ratio λ̃n/λn ∼ π2/4 is bounded, independent of n, which is not the case for the advection operator as we
shall see later in the course. We also note that the lower eigenvalues of the continuous Poisson problem are
well-approximated by virtually every worthy numerical method (i.e., as in (17)).

5

2 Poisson Equation in lR2

Our principal concern at this point is to understand the (typical) matrix structure that arises from the 2D
Poisson equation and, more importantly, its 3D counterpart. The essential features of this structure will
be similar for other discretizations (i.e., FEM, SEM), other PDEs, and other space dimensions, so there is
merit to starting with this relatively simple system.

The steady-state heat equation in two dimensions is:

−∇ · k∇T = q′′′(x, y), plus BCs. (18)

For constant thermal conductivity k this equation reduces to the standard Poisson equation in Ω := [0, 1]2 ⊂
lR2, which we usually express in terms of u for notational convenience:

−∇2u = f(x, y), plus BCs (19)

= −
(
∂2u

∂x2
+
∂2u

∂y2

)
= −

(
δ2u

δx2
+
δ2u

δy2

)
+O(h2),

where we have substituted the finite difference approximations, assumed to be about the point xij := (xi, yj),

δ2u

δx2
:=

ui+1,j − 2ui,j + ui−1,j

∆x2
(20)

δ2u

δy2
:=

ui,j+1 − 2ui,j + ui,j−1

∆y2
,

with the further assumption of uniform grid spacing, ∆x = ∆y = h. We’ll also consider homogeneous
Dirichlet boundary conditions, that is, u(x, y)|∂Ω ≡ 0. The respective unknowns and data in this case are
uij and fij , governed by the following system of equations

−
(
ui+1,j − 2ui,j + ui−1,j

∆x2
+
ui,j+1 − 2ui,j + ui,j−1

∆y2

)
= fij , (21)

for i, j ∈ [1, . . . , nx]× [1, . . . , ny].

A picture of the 5-point “stencil” representing the interactions implied by (21) is shown below and a
typical grid with equal spacing ∆x = ∆y is shown in Fig. 4.

6

ui−1,j uij ui+1,j

ui,j−1

ui,j+1

-1 4 -1

-1

-1

Figure 3: 5-point stencil associated with gridpoint (xi, yj) indicates how (21) links uij to its neigh-
boring values. Other (e.g., 9-point) stencils are also possible.

−
(
ui+1,j − 2ui,j + ui−1,j

∆x2
+
ui,j+1 − 2ui,j + ui,j−1

∆y2

)
= fij,

7

Figure 4: Finite-difference grid for 2D Poisson problem with Nx = 6 and Ny = 5. The black portion
of the grid shows the actual degrees-of-freedom, whereas the red indicates known boundary values.
Note that nx = Nx − 1 and ny = Ny − 1.

8

Assuming a lexicographical ordering in which the i- (x-) index advances fastest, the system
takes on the following matrix structure for ∆x = ∆y = h.

1
h2

4 −1 −1
−1 4 −1 −1

−1
. . .

. . .
. . .

. . .
. . . −1

. . .

−1 4 −1

−1 4 −1
. . .

−1 −1 4 −1
. . .

. . . −1
. . .

. . .
. . .

. . .
. . .

. . . −1
. . .

−1 −1 4
. . .

. . .
. . . −1

. . .
. . . −1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 4 −1

−1 −1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −1
−1 −1 4

︸ ︷︷ ︸

A2D

u11
u21

...

..

.
unx1

u12
u22

...

...
unx2

...

...

...

...

..

.

u1ny

u2ny

...

...
unxny

︸ ︷︷ ︸

u

=

f11
f21

...

..

.
fnx1

f12
f22

...

...
fnx2

...

...

...

...

..

.

f1ny

f2ny

...

...
fnxny

︸ ︷︷ ︸

f

We see that u11 interacts with u21 by virtue of the −1s on the first superdiagonal and with u12

through the −1s on the second nontrivial superdiagonal, which is +nx columns away from the main
diagonal.

Q: What is the matrix bandwidth in this case?

Q: Assuming that nx = ny and n = nx × ny, what is the matrix bandwidth in terms of n?

Q: How many nonzeros will be in the LU factors, L and U?

Q: What is the cost of solving Lv = f? and Uu = v?

Q: What is the cost of computing the LU factors?

9

It is instructive to note that A2D can be expressed as the sum of two systems, one associated with
Ax coming from δ2u

δx2
, and one associated with one associated with Ay coming from δ2u

δy2
. Specifically,

we can write

A2D = (Iy ⊗Ax) + (Ay ⊗ Ix), (22)

where we introduce the Kronecker (or tensor) product, ⊗.

For two matrices A and B, their Kronecker product C = A⊗B is defined as the block matrix

C :=

a11B a12B · · · · · · a1nB
a21B a22B · · · · · · a2nB

...
...

...
am1B am2B · · · · · · amnB

 . (23)

We will soon explore a few properties of this form, but for now simply note that it allows a clean
expression of the discretized Poisson operator in 2D. Consider the following splitting of A2D.

The decomposition

A2D = (Iy ⊗Ax) + (Ay ⊗ Ix), (24)

has the following explicit form.

10

A2D =
1

h2

2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

. . .

. . .

. . .

. . .

. . .

2 −1

−1 2
. . .

. . .
. . .

. . .

. . .
. . . −1
−1 2

+
1

h2

2 −1
2 −1

. . .
. . .

. . .
. . .

2 −1

−1 2
. . .

−1 2
. . .

. . .
. . .

. . .

. . .
. . .

. . .

−1 2
. . .

. . .
. . . −1

. . .
. . . −1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 2
−1 2

. . .
. . .

. . .
. . .

−1 2

11

A2D =

Ax

Ax
. . .

Ax

 +
1

h2

2Ix −Ix
−Ix 2Ix

. . .
. . .

. . . −Ix
−Ix 2Ix

 (25)

= (Iy ⊗Ax) + (Ay ⊗ Ix)

We see that we can express A2D as (Iy ⊗ Ax) + (Ay ⊗ Ix). The first term is nothing other than

− δ2

δx2
being applied to each row (j) of uij and the second term amounts to applying − δ2

δy2
to each

column (i) on the grid.

Note that our finite-difference stiffness matrix in matlab would be written as

A = kron(Iy,Ax) + kron(Ay,Ix)

where Ax and Ay are formed using the matlab spdiags command (help spdiags), and Iy and Ix
are formed using speye.

It is important to use sparse matrices in matlab for these higher-dimensional (2D and 3D)
problems or you will run out of memory and it will take very long to solve these problems.

Even with sparse matrices, the solve times will be long. This problem is known in scientific com-
puting and the curse of dimensionality.

12

• Note that our lexicographical ordering

u = [u11 u21 · · · unxny]T

is in effect nothing other than an association of an array of indices, [i, j] to a position
in memory.

• We could also view this ordering as assigning id’s to the vertices of our original graph,
as illustrated below.

Figure 5: Lexicographical assignment of vertex id’s to nodes of a finite-difference graph.

• Q: What is the bandwidth of A2D in this case?

13

• Q: What is the bandwidth of A2D in this case?

Figure 6: Lexicographical assignment of vertex id’s to nodes of a finite-difference graph.

14

• It is important to note that the graphs of these meshes are isomorphic to the fill pattern
of the corresponding sparse matrix.

• To see this, associate each node (or vertex) i in the graph with the diagonal entry, aii.

• Off-diagonal entries, aij, are zero if vertex i is not connected to vertex j, and nonzero
if i is connected to j.

• For this reason, graph partitioning and graph re-ordering is an important topic for
sparse matrix solution.

• Consider the example below from Saad.

• What is the associated sparse matrix (just the pattern)?

Figure 7: Star graph 1.

15

Figure 8: Arrow matrix 1.

• Q: What happens if we perform LU in this case?

16

Figure 9: Star graph 2.

• Q: What is the associated sparse matrix in this case?

17

Figure 10: Arrow matrix 2.

• Q: What happens if we perform LU in this case?

18

• In general, ordering weakly connected vertices first is a good idea.

• Matlab supports multiple options, including symmetric approximate minimum degree
(p=symamd(A)), which is quite effective in reducing fill in the factors L and U .

• Let’s look at a few demos on the consequence of reording in our original graph.

cs556/notes/nest/test3.m

19

2.1 Matlab Kronecker Product Demos

close all; format compact;

% Kronecker Product Demo

%

% NOTE: It is important to use SPARSE matrices throughout.

%

% Otherwise, your run times will be very long and

% you will likely run out of memory!

Lx=2; Ly=1;

nx=15; ny=3; % Number of _interior_ points

dx=Lx/(nx+1); dy=Ly/(ny+1);

% USE help spdiags

e = ones(nx,1); Ax = spdiags([-e 2*e -e], -1:1, nx, nx)/(dx*dx);

e = ones(ny,1); Ay = spdiags([-e 2*e -e], -1:1, ny, ny)/(dy*dy);

Ix=speye(nx); Iy=speye(ny);

A = kron(Iy,Ax) + kron(Ay,Ix); %%% FINITE DIFFERENCE STIFFNESS MATRIX

% A couple of demo cases without the 1/(dx*dx) scaling.

nd= 5;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Iy,Ad); full(T)

nd= 15;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Iy,Ad); spy(T)

title(’I_y \otimes A_x’,’fontsize’,16)

set(gcf,’PaperUnits’,’normalized’);set(gcf,’PaperPosition’,[0 0 1 1])

print -dpdf iyax.pdf

pause; figure

nd= 5;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Ad,Ix); full(T)

nd= 15;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Ad,Ix); spy(T)

title(’A_y \otimes I_x’,’fontsize’,16)

set(gcf,’PaperUnits’,’normalized’);set(gcf,’PaperPosition’,[0 0 1 1])

print -dpdf ayix.pdf

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 129

I
y
 ⊗ A

x

Iy ⊗ Ax

0 50 100 150 200

0

50

100

150

200

nz = 645

A
y
 ⊗ I

x

Ay ⊗ Ix

20

2.2 Poisson Equation in lR3

We now extend the 1D and 2D concepts to the most important 3D case. The short story is that
the 3D stiffness matrix has the beautifully symmetric form

A3D = (Iz ⊗A2D) + (Az ⊗ I2D) (26)

= (Iz ⊗ Iy ⊗Ax) + (Iz ⊗Ay ⊗ Ix) + (Az ⊗ Iy ⊗ Ix).

and the discrete system is, as before, A3Du = f . This of course is the form that arises for a finite
difference discretization of −∇2u = f in Ω = [0, 1]3, u = 0 on ∂Ω, or, more explicitly,

−
(
δ2u

δx2
+
δ2u

δy2
+
δ2u

δz2

)
= f(xi, yj , zk), (27)

with

δ2u

δz2

∣∣∣∣
ijk

:=
uij,k+1 − 2uijk + uij,k−1

∆z2
, (28)

and equivalent expressions for δ2u
δx2

and δ2u
δy2

.

Note that, with (26), we really have not restricted ourselves to uniform mesh spacing in each
direction. We could have different grid spacing ∆x, ∆y, and ∆z and a different number of mesh
points nx, ny, and nz, in each of the space directions. Then, Ix would be the nx×nx identity matrix
and Ax would be the corresponding stiffness matrix, as would also be the case for y and z. (Note
also that we could even relax the condition of uniform spacing in each of the space directions.)

Quiz:

• Assume that we solve the Poisson problem on Ω = [0, L]d with grid spacing h = L/N in each
of d space dimensions, d = 2 or 3. If the unknowns are ordered lexicographically, what is the
matrix bandwidth of the system matrix A for the case d = 2?

• For d = 3?

• What is the number of unknowns, n for each case, d = 2 and 3?

21

3 Kronecker Product Matrix Properties

Kronecker products have several useful properties in the the solution of PDEs and (more recently)
in machine learning, which is driving the development of specialized software and hardware for
Kronecker product application and manipulation. (Unfortunately, much of this development is
targeting 16-bit operations, which is not sufficient for most scientific computing applications.)
There are two main properties of interest, the matrix-product rule and matrix-vector products.

For, completeness, we recall that the the Kronecker product of two matrices A and B is defined
as the block matrix

C = A⊗B :=

a11B a12B · · · · · · a1nB
a21B a22B · · · · · · a2nB

...
...

...
am1B am2B · · · · · · amnB

 . (29)

We note that if A and B are each N ×N matrices, then C is a much larger N2 ×N2 matrix, with
N4 nonzeros in the case when A and B are full. We also note that I ⊗B and A⊗ I have a special
structure.

I ⊗B =

B

B
. . .

B

 , (30)

A⊗ I =

a11I a12I · · · a1nI
a21I a22I · · · a2nI

...
...

. . .
...

am1I am2I · · · amnI

 . (31)

Thus, I ⊗B is block-diagonal, whereas A⊗ I comprises diagonal blocks.

The most important property of Kronecker products for the purposes of PDEs is the matrix-
product rule. Suppose we have C and F satisfying

C = A⊗B, F = D ⊗ E.

Then, straightforward application of (29) reveals that the matrix product CF is given by

CF = (A⊗B)(D ⊗ E) = AD ⊗BE, (32)

under the assumption that the dimensions of (A,D) and (B,E) are such that the products AD and
BE make sense.

22

The product rule (32) leads to several notable properties that we now describe. To simplify the
exposition, we’ll assume that A and B are N ×N matrices unless otherwise noted.

• Inverse. The inverse of C = A⊗ B is C−1 = A−1 ⊗ B−1. Thus, the inverse of an N2 ×N2

matrix can be found by inverting (or, more typically, factoring) two much smaller N × N
matrices.

• Eigenvalues. Let C = By ⊗ Bx and suppose that there exists a diagonalization of Bx and
By given, for Bx, by S−1

x BxSx = Λx, with Sx the matrix of eigenvectors and Λx the diagonal
matrix containing, with a similar form for By. Then

C = By ⊗Bx = (SyΛyS
−1
y) ⊗ (SxΛxS

−1
x) (33)

= (Sy ⊗ Sx)︸ ︷︷ ︸
S

(Λy ⊗ Λx)︸ ︷︷ ︸
Λ

(S−1
y ⊗ S−1

x)︸ ︷︷ ︸
S−1

. (34)

Thus, the N2 × N2 eigenvalue problem CS = SΛ is solved by solving two small (N × N)
eigenvalue problems, which lead to S = Sy ⊗ Sx and Λ = Λy ⊗ Λx.

23

• Matrix-Vector Product. Suppose S = Sy ⊗ Sx and we wish to evaluate the matrix-vector
product w = Sf , where f is assumed to have a natural dual-subscript ordering, {fij}, as in
Fig. 4. If we evaluate w by first forming S, then the storage and work rises sharply from
O(N2) to O(N4). Instead, we evaluate the product in factored form,

w = (Sy ⊗ Ix) (Iy ⊗ Sx)f. (35)

The first evaluation generates the vector v := (Iy ⊗ Sx)f , which has entries

vij =

nx∑
p=1

(Sx)ipfpj , i ∈ [1, . . . , nx], j ∈ [1, . . . , ny]. (36)

which can be seen by inspecting the figure preceding Eq. (22). Assuming Sx is full, the cost
of computing v is 2nx for each of the nynx entries, or O(N3).

The next step is evaluation of w = (Sy ⊗ Ix)v.

wij =

ny∑
q=1

(Sy)jqviq, (37)

which has cost 2n2
ynx.

Note that significant performance gains (up to an order-of-magnitude) can be realized by
recognizing that the doubly-indexed vectors, w, v, and f can be viewed as corresponding
ny × nx matrices, W , V , and F . In this case, the matrix-vector product evaluation (35) can
be expressed in matrix-matrix product form:

W = SxFS
T
y . (38)

Or, in general, for any v = (A⊗B)u, we have V = B UAT . Matrix-matrix products are some
of the most efficient operations possible in numerical computation because the require only
O(N2) memory references for O(N3) operations, so the form (38) is generally very fast.

Matrix-vector products involving third-order tensors of the form A = Az ⊗ Ay ⊗ Ax can be
evaluated with similar efficiencies. In partcular, z = Au would be evaluated as

vijk =

nx∑
p=1

(Ax)ipupjk v = (Iz ⊗ Iy ⊗Ax)u (39)

wijk =

ny∑
q=1

(Ay)jqviqk w = (Iz ⊗Ay ⊗ Ix)v (40)

zijk =

nz∑
r=1

(Az)krwijr z = (Az ⊗ Iy ⊗ Ix)w, (41)

which has a total operation count of O(N4) and storage count of O(N3) for the input and
output data. It is also possible, with minor effort, to recast (39)–(41) in terms of fast matrix-
matrix products. (Recall, in 3D, N3 ≈ n.)

24

3.1 Fast Diagonalization Method (FDM)

We will use the tools of the preceding section to develop fast solvers for the systems in (22) and
(26). This idea originated in a 1964 paper by Birkhoff, Lynch, and Rice that predates the FFT by
one year. In the present exposition we assume that A∗ is the tridiagonal 1D Poisson operator of
the preceding section, but the method carries through with the same complexity even if A∗ is full
(e.g., as might be the case for a high-order approximation to the Poisson operator).

To start, we assume that the 1D matrices A∗ have the similarity transform A∗ = S∗Λ∗S
−1
∗ , for

∗=x, y, and z, where Λ∗ is the diagonal matrix of eigenvalues and S∗ the corresponding matrix of
eigenvectors. For the 2D case, we have

A2D = (Iy ⊗Ax) + (Ay ⊗ Ix) (42)

= (SyS
−1
y ⊗ SxΛxS

−1
x) + (SyΛyS

−1
y ⊗ SxS−1

x) (43)

= (Sy ⊗ Sx) (Iy ⊗ Λx + Λy ⊗ Ix) (S−1
y ⊗ S−1

x), (44)

whose inverse is given by

A−1
2D = (Sy ⊗ Sx)D−1 (S−1

y ⊗ S−1
x), (45)

(46)

with the trivially inverted diagonal matrix

D := (Iy ⊗ Λx + Λy ⊗ Ix). (47)

Aside from the preprocessing costs to find [S∗,Λ∗], the total work is≈ 8N3, assumingNx = Ny = N .

25

Let’s look more closely at the steps of the FDM.

Starting with known grid data, f = [f11 f21 · · · fnxny], we compute the solution to Au = f as

u = (Sy ⊗ Sx)︸ ︷︷ ︸
S

D−1︸︷︷︸
Λ−1

(S−1
y ⊗ S−1

x)︸ ︷︷ ︸
S−1

f, (48)

where we have emphasized that S := (Sy ⊗ Sx) is the matrix of eigenvectors of A := A2D and Λ is
the corresponding matrix of eigenvalues.
Let’s break this operation down further:

i) f̂ = (S−1
y ⊗ S−1

x) f Fourier transform of data

iii) û = D−1f̂ divide by wavenumbers squared

iii) u = (Sy ⊗ Sx) û combine eigenvectors to construct solution.

(49)

The “Fourier” transform requires two tensor contractions of the form (38), which are implemented
as

F̂ = S−1
x F S−Ty , (50)

requiring ∼ 2(2N3) floating point operations. Division by the eigenvalues requires ∼ N2 � N3

operations. Finally, the inverse transform is expressed as a second pair of tensor contractions,

U = Sx Û Sy, (51)

such that the total complexity is ∼ 8N3. Here, we are neglecting the cost to find the eigenpairs as
these are known in closed-form. For more general cases, we could call an eigenvalue solver to find
(Sx,Λx) and (Sy,Λy) as part of a one-time setup.

It is important to note that, for the uniformly-spaced grid case, the O(N3) complexity can be
reduced to O(N2 logN) by use of the FFT. This approach is used by fishpack, which s about
10–20× faster than multigrid for 2D problems.

An interesting aside about the fast diagonalization method is that it allows us to easily solve
systems of the form f(A)u = b. In 2D, the answer is

u = (Sy ⊗ Sx)F−1 (S−1
y ⊗ S−1

x)u, (52)

where F is the diagonal matrix with entries Fss = f(λx,k + λy,l), with s = k + nx(l − 1) for
k = 1, . . . , nx and l = 1, . . . , ny.

26

The 3D complexity is similar, with

A−1
3D = (Sz ⊗ Sy ⊗ Sx)D−1 (S−1

z ⊗ S−1
y ⊗ S−1

x), (53)

(54)

with

D := (Iz ⊗ Iy ⊗ Λx + Iz ⊗ Λy ⊗ Ix + Λz ⊗ Iy ⊗ Ix). (55)

The work is ≈ 12N4.

Fast diagonalization is readily extended to the more general case that arises in finite element
methods,

A3D = (Bz ⊗By ⊗Ax) + (Bz ⊗Ay ⊗Bx) + (Az ⊗By ⊗Bx), (56)

where B∗ is the mass matrix in the “*” direction. The corresponding one-dimensional eigenpairs
are solutions to the generalized eigenproblem, A∗S∗ = B∗S∗Λ∗, with eigenvectors normalized to
satisfy ST∗ B∗S∗ = I∗.

27

4 Green’s Functions and A−1

Note that for any system Au = f we can explicitly identify the columns of A−1 by successively
solving Au = f with f = êj , j = 1, . . . , n, where êj is the jth column of the n× n identity matrix.
For the 1D Poisson problem this concept is particularly illuminating because we know that the
(physical) solution to the problem Au = êj = [0 0 . . . 1 . . . 0]T is a “tent” function that peaks at
xj and decays linearly to zero at x0 and xN . The linear decay represents a function whose second
derivative is zero. This tent solution corresponds to the Green’s function. If we denote by ûj the
solution to Aûj = êj , then the solution to Au = f for a general (discrete) function [fj] will be

u =
n∑
j=1

ûjfj = A−1f. (57)

The first bit of insight gained from this perspective is that A−1 is completely full. Any point source
f = êj will generate a non-trivial solution ûj throughout the domain. Also, A−1 is a positive
matrix, A−1 > O.

Continuing with this thermal analogy, we can further assert that A−1 is full in higher space
dimensions as well. From a parallel computing perspective, with u and f distributed vectors, we
recognize that solving Au = f (inescapably) involves all-to-all communication: each nontrivial
right-hand-side value fi has a nontrivial impact on each solution point uj . In Fig. 11 we show
Green’s function examples for 1D and 2D.

28

Figure 11: Green’s function examples for (top) 1D and (bottom) 2D Poisson problems using finite
differences with N=50.

29

5 Convergence Analysis

We saw in (4) that the stiffness matrix A applied to the vector ũ := [ũi] produces O(∆x2) approx-
imations to −ũ′′

i and, from (16), that the eigenvalues of A are O(∆x2) approximations to their
continuous counterparts, λ̃k, for sufficiently small k/N . To establish that u ≈ ũ we need one more
piece of information, namely, that the discrete system is stable. Specifically, we will establish that
Au = f implies that the solution is bounded by the data,

||u||∞ ≤ L2

8
||f ||∞. (58)

Crucially, (58) holds for all n.

5.1 Application of Stability

Before deriving the stability result (58) we will show why it is useful. Let the pointwise error
ej := ũj − uj . Subtracting (7) from (5), leads to

−δ
2ej
δx2

= = − ∆x2

12

d4ũ

dx4

∣∣∣∣
xj

+O(h4) (59)

= − ∆x2

12

d2f

dx2

∣∣∣∣
xj

+O(h4). (60)

Under the assumption that f is sufficiently smooth (i.e., f
′′
<∞), we can apply the stability result

(58) to (60),

||e||∞ ≤ L2

8

∆x2

12
||f ′′ ||∞, (61)

which implies that the maximum pointwise error, ||ũ− u||∞ = O(∆x2).

5.2 Derivation of Stability

We begin by deriving the continuous analogy of (58).1 Let

dũ

dx
=: w(x) (62)

be the solution to (3) such that

dw

dx
= −f(x). (63)

Integrate (63) to find

w(x) = c2 −
∫ x

0
f(s) ds︸ ︷︷ ︸
F (x)

= c2 − F (x). (64)

1See Chap. 12 of Quarteroni, Sacco, and Saleri, Numerical Mathematics, Springer, 2007.

30

Inserting (64) into (62) and integrating yields

ũ(x) = c1 +

∫ x

0
w(s) ds (65)

= c1 + c2x −
∫ x

0
F (s)︸︷︷︸
“v”

1 · ds︸ ︷︷ ︸
“du”

, u(0) = 0 =⇒ c1 = 0 (66)

= c2x +

∫ x

0
s F ′(s) ds − sF (s)|x0 , (67)

= c2x +

∫ x

0
s f(s) ds − x

∫ x

0
f(s) ds, (68)

where we have used integration by parts to eliminate
∫
F (s)ds. Combining the pair of integrals in

(68), we have an equation for the solution ũ at any point x,

ũ(x) = c2x +

∫ x

0
(s− x) f(s) ds. (69)

We proceed by using the boundary condition at x = L to eliminate the integration constant c2.

ũ(L) = c2L +

∫ L

0
(s− L) f(s) ds = 0, (70)

from which

ũ(x) =

∫ x

0
(s− x) f(s) ds − x

L

∫ L

0
(s− L) f(s) ds (71)

=

∫ x

0
(s− x) f(s) ds − x

L

∫ x

0
(s− L) f(s) ds − x

L

∫ L

x
(s− L) f(s) ds (72)

=

∫ x

0

[
(s− x)− x

L
(s− L)

]
f(s) ds − x

L

∫ L

x
(s− L) f(s) ds (73)

=

∫ x

0
s(1− x/L) f(s) ds +

∫ L

x
x(1− s/L) f(s) ds (74)

=

∫ L

0
G(x, s) f(s) ds. (75)

Here, the Green’s Function, G(x, s) is defined as

G(x, s) :=

{
s(1− x/L), s ≤ x

x(1− s/L), s ≥ x
. (76)

The Green’s function is plotted for several values of x in Fig. 2 (right). The maximum of G is L/4.
Moreover, ∫ L

0
G(x, s) ds =

L2

2

x

L

(
1− x

L

)
≤ L2

8
. (77)

31

Thus, for any x ∈ Ω, we have

|u(x)| =

∣∣∣∣ ∫ L

0
G(x, s) f(s) ds

∣∣∣∣ (78)

≤
∫ L

0
|G(x, s)| |f(s)| ds (79)

≤ L2

8
max
s∈Ω
|f(s)| =

L2

8
||f ||∞, (80)

which establishes the desired result.

For the discrete case, our solution is

u = A−1f = Gf =

n∑
j=1

g
j
fj , (81)

where G := A−1. Clearly, u is a linear combination of the columns of G, which constitute the
discrete Green’s functions. For the 1D case, each column j has entries2

gij =

 L2

N
i
N

(
1− j

N

)
, i ≤ j

L2

N
j
N

(
1− i

N

)
, i ≥ j

. (82)

To see this, consider the product W = AG. Apply row i of A to column j of G, with i < j.

wij = − L2

N2∆x2

(
1− j

N

)
[(i− 1) − 2i + (i+ 1)] = 0, (83)

with a similar result for i > j. For the case i = j, we have

wii = − L2

N2∆x2

[
(i− 1)

(
1− i

N

)
− 2i

(
1− i

N

)
+ i

(
1− i+ 1

N

)]
(84)

= 1, (85)

which follows because ∆x = L/N .

From (81), we have

||u|| = ||Gf || ≤ ||G|| · ||f ||, (86)

which holds for any vector norm. The inequality on the right is nothing other than the definition
of the matrix norm, ||G||, induced by any chosen vector norm, ||f ||. That is, for any vector norm
|| · || and G,

||G|| := max
u6=0

||Gu||
||u||

= max
||u||=1

||Gu||. (87)

In particular, with

||u||∞ := max
i
|ui|, (88)

2In 1D, the shape of the discrete Green’s functions are identical to their continuous counterparts because the
solution is exact on either side of xj where fi 6=j = 0. In these regions, the solution to −ũ′′ = 0 is a polynomial of
degree 1 and the truncation error is zero.

32

the corresponding infinity norm for the matrix G is readily shown to be,

||G||∞ = max
i

n∑
j=1

|gij |. (89)

For (82), the maximum is realized for i = N/2 (for N even). Exploiting the symmetry of G, we
have

||G||∞ =
L2

N2

(
1− 1

2

)2

N/2−1∑
i=1

i +
N

2

 (90)

=
L2

2N2

[
N

2

(
N

2
− 1

)
+

N

2

]
=

L2

8
. (91)

We reiterate that the crucial result is that ||G||∞ is a constant that does not depend on the
grid spacing (i.e., on N). Because of (59), this result is sufficent to bound the solution error,
||e||∞ ≡ ||ũ− u||∞ ≤ C∆x2, with a constant that is independent of N .

Remarks. We make a few closing remarks concerning the 1D analysis.

• An intuitive derivation of G follows from the fact that in intervals where f(x) ≡ 0, ũ(x) will
be a straight line as will u(xj) := uj . So, if fj is the jth column of the identity matrix, ui,
i < j will ascend linearly from u0 = 0 to uj and will then descend linearly from uj to uN = 0
for i > j. The value of uj is set by the need for the jth column of G to satisfy the difference
equation at row i. In any case, each entry of G is positive.

• In this example, in addition to being symmetric positive definite (SPD), A is what is known
as an M -matrix. It has positive entries on the diagonal, all off-diagonal entries are ≤ 0, and
the row-sum is ≥ 0 for each row. One property of M matrices is that their inverses (G = A−1)
are positive: gij > 0.

• If G is positive, then ||G||∞ = ||Gf ||∞, when f = 1 is the vector of all ones. That is, if f = 1,
and u is the solution to Au = f , then ||G||∞ = maxi ui. This result extends to multiple space
dimensions whenever G is positive or A is an M -matrix.

33

