CS556 Iterative Methods Fall 2020
Eigenvalues from PCG

Consider the following PCG algorithm with A and preconditioner M SPD.
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Note that PT AP =diag(y;). We also have that Z = PB, so

zTAz = T, (12)

where T is a k x k tridiagonal matrix. Moreover, ZT MZ = ZT R =diag(p;) =: A2. From these, we
can find approximate eigenvectors and eigenvalues for the generalized eigenvalue problem, As; =
AjMs;. Let’s consider A, the eigenvalue that maximizes the Rayleigh quotient,

sT As

An = max s (13)
The approximated value is
An = maX& = maxw = maxﬂ = Uk (14)
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where pj is the maximum eigenvalue for the k x k generalized eigenvalue problem,
ng = ijzgj (15)

Here, A? is a diagonal matrix. Define u = Ay — y = A~ u. The right-most Rayleigh quotient in
the preceding equation becomes

M = = max ——, (16)

where T := A—1TAL,



