
Projection-Based Iterative Methods, I

Introduction

• We wish to develop an iterative solution method for the system Ax = b,
where A ∈ lRn×n is assumed to symmetric positive definite (SPD) unless
otherwise indicated.

• Our main interest in iterative methods is for matrix-free applications, in
which one does not have explicit access to the matrix A but instead simply
has a black box that, given a vector p returns another vector w = Ap.

• To introduce the topic, we make three observations about Jacobi relaxation,

xk+1 = xk +D−1(b− Axk) , (1)

where D =diag{aii}.

1

• Observation 1: Subtracting (1) from x = x + D−1(b − Ax) yields the
associated equation for the error, ek := x− xk,

ek+1 = (I −D−1A) ek, (2)

or

ek = (I −D−1A)k e0. (3)

• For convergence, we require ρ(I−D−1A) < 1, where, for any matrix C with
eigenvalues λi, ρ(C) = maxi|λi| is the spectral radius of C.

• Convergence will be rapid if ρ(I −D−1A)� 1.

2

• Observation 2: With x0 = 0 we have e0 = x. Using the error equation (3)
we can generate an explicit polynomial form for xk:

x− xk = (I −D−1A)k x

=
[
I − a1D−1A− a2(D−1A)2 − · · · − ak(D−1A)k

]
x, (4)

from which

xk =
[
a1I + a2D

−1A2 + · · ·+ ak(D
−1A)k−1

]
D−1b (5)

∈ Kk(D
−1A;D−1b). (6)

• Here, Kk denotes the Krylov subspace.

• For any matrix C ∈ lRn×n and vector v ∈ Rn, we define

Kk(C, v) := span
{
v, Cv, C2v, . . . Ck−1v

}
= lPk−1(C)c, (7)

with lPk−1 denoting the space of polynomials of degree ≤ k-1 in the argu-
ment.

3

• Observation 3: The polynomials (3) and (5) do not reflect any properties
of our particular D−1, A, or b. The polynomial coefficients aj derive from
the binomial expansion for (I−D−1A)k and are thus not likely to be optimal.

• The projection methods developed below (of which conjugate gradients and
GMRES are two of the most common examples) allow us to find the best fit,
xk ∈ Kk such that

‖x− xk‖∗ ≤ ‖x− v‖∗ ∀v ∈ Kk, (8)

for a particular norm ‖ · ‖∗ to be determined.

• If A is SPD, projection methods have a per-iteration cost that is comparable
to Jacobi relaxation (1) but that require far fewer iterations to converge.

4

• Before proceding, we make two comments about the matrix pair D and A.

• First, we can relax the assumption that D is the diagonal of A and instead
assume that it is some more general preconditioner (perhaps also SPD if A
is).

• Second, we can also rescale the system in terms of a matrix for which D = I.
If aii > 0 (e.g., if A is SPD), then Ax = b is equivalent to Ãx̃ = b̃ with ãii ≡ 1
and

Ã := D−
1
2AD−

1
2 , x̃ := D

1
2x, b̃ := D−

1
2b.

• Consequently, we develop the projection schemes initially without reference
to the preconditioner and seek xk ∈ Kk(A; b). We will revisit preconditioning
in a separate lecture.

5

Projection methods

• Projection methods are based upon the idea of minimizing the error between
x and the kth iterate, xk, in an appropriately chosen norm.

• xk is selected from a k-dimensional subspace of lRn denoted by

Vk = span{v1 v2 . . . vk}.

• At present, we make no assumptions about Vk aside from the fact that basis
vectors, or search directions, vj, should be linearly independent and hence a
spanning set of Vk.

• Note that the minimization problem is well-defined even in the absence of
linear independence, but the methods prescribed below would break down
and stability is potentially compromised.

6

• To derive the projection-based approximation we start with

xk =
k∑

j=1

βjvj ∈ Vk. (9)

• Our task is to find coefficients βj such that

‖x− xk‖W ≤ ‖x− w‖W ∀w ∈ Vk. (10)

• To be concrete, for some SPD matrix W , define

(v, w)
W

:= vTWw (11)

‖v‖
W

:= (v, v)
1
2
W (12)

• Later, we will choose W = A if A is SPD or W = ATA if A is nonsymmetric.

7

Minimization ⇐⇒ Orthogonalization

• We need to derive a set of equations to find the best-fit, xk.

• We start with its definining property.

• Define ek = x− xk and xk as the minimizer satisfying

‖x− xk‖W ≤ ‖x− w‖W ∀w ∈ Vk (13)

= ‖x− (xk + εv)‖
W
. (14)

The second expression holds for any ε ∈ lR1 and v ∈ Vk.

8

• Replacing x − xk =: ek and expanding the bilinear forms, the projection
requirement (13) becomes

‖ek‖2W ≤ ‖ek + εv‖2
W

= (ek + εv)TW (ek + εv) (15)

= eTkWeTk + εvTWek + εeTkWv + ε2vTWv,

= ‖ek‖2W + 2εvTWek + ε2‖v‖2
W

∀ (ε, v ∈ Vk).

• From the final inequality and the fact that ε can be of arbritrary sign it is
clear that the error will be minimized if and only if

vTWek = 0 ∀ v ∈ Vk. (16)

Otherwise, it is always possible to find a value of ε such that the expression
on the right of (15) is smaller than ‖ek‖W, which is not possible if xk is the
minimizer of ‖x− v‖2

W
.

9

• We conclude that a necessary condition for xk to be the best fit is

(v, ek)W
= 0 ∀ v ∈ Vk. (17)

We say that the error is W -orthogonal to Vk (ek ⊥W Vk) and that xk is the
projection of x onto Vk.

• This situation is illustrated in the accompanying figure.

XXXXXXXXXXXXXXXXXX

��
�
��

�
��

�
��
�XXXXXXXXXXXXXXXXXX

��
��

�
��

�
��

��W
���

���
���

���:6

-Vk
ek

xk

x

• Thus, we have the following important concept:

Minimization ≡ Orthogonal Projection.

• An equivalent expression is that the kth iterate satisfies the projection state-
ment,

(v, xk)W = (v, x)W , ∀ v ∈ Vk. (18)

10

• xk being the minimizer of ‖ek‖W is equivalent to ek being orthogonal to Vk
(with respect to (., .)

W
).

• Note that in the limit of k −→ n, we have Vk = lRn, implying that ek is
orthogonal to all lRn.

• This can only be true if ek = 0 which implies xk = x.

• The projection scheme is exact in this limit, modulo round-off error.
(CG was originally viewed as a direct solver.)

11

Solution Generation

• We can use (16) to generate a system of equations to find the unknown basis
coefficients βj in (9).

• We’ll assume that A is SPD and will minimize in the A-norm (i.e., W = A).

• Moreover, we’ll assume that we have a basis,

span{p
1
, p

2
, . . . , p

k
} = span{v1, v2, . . . , vk} = Vk,

with unknown basis coefficients αj.

• Denoting these two sets of vectors by the n× k matrices Pk and Vk, respec-
tively, the change of basis will allow us to transform a given set Vk to the
set Pk that will have appropriate orthogonality properties.

• We note that the range, or column spaces, are the same, R(Pk) = R(Vk),
but the bases (the actual columns) are different.

• For now, we proceed assuming we have the set Pk in hand.

12

• Starting with

xk =
k∑

j=1

p
j
αj, (19)

(16) implies, for i = 1, . . . , k,

(p
i
, ek)A := pT

i
Aek = 0 (20)

pT
i
A (x − xk) = 0 (21)

pT
i
Axk = pT

i
Ax (22)

pT
i
Axk = pT

i
b (23)

k∑
j=1

pT
i
Ap

j
αj = pT

i
b, (24)

which constitutes k equations in k unknown basis coefficients αj, j = 1, . . . , k.

• Defining

Ak = P T
k APk (25)

Pk = [p
1
, . . . , p

k
] (26)

α = [α1, . . . , αk]
T (27)

bk = [pT
1
b, . . . , pT

k
b]T , (28)

we have

Akα = bk . (29)

• Note that, because Pk is of full rank (the p
i
’s are linearly independent) and

A is symmetric positive definite (SPD), Ak is also SPD and the k×k system
in (29) is solvable.

13

• Once α is found, xk is computed using (19),

xk = Pkα = Pk(P
T
k APk)

−1P T
k b (30)

= Pk(P
T
k APk)

−1P T
k Ax. (31)

• The expression on the right of (31) is a classic projection statement.

• It represents the A-orthogonal projection of x onto R(Pk).

• The solution xk is in R(Pk), the units of A and A−1 cancel out, as do the
units of Pk.

• Thus, xk has the same units as x, as it should.

• It is shorter in the A-norm than x, ‖xk‖A < ‖xk‖A, unless x is in R(Pk), in
which case xk = x.

14

Basis for Vk

• We now seek a procedure for generating the basis set {p
j
}.

• The minimization procedure (29) is greatly simplified if the basis vectors are
A-conjugate, implying:

pT
i
Ap

j
= 0 i 6= j . (32)

• This results in Ak being diagonal, as its entries are simply (Ak)ij = pT
i
Ap

j
,

and leads immediately to a closed form expression for αj:

αj =
pT
j
b

pT
j
Ap

j

, (33)

from which,

xk =
k∑

j=1

pT
j
b

pT
j
Ap

j

p
j

=
k∑

j=1

(p
j
, x)A

(p
j
, p

j
)A
p
j
. (34)

The second expression is the familiar form associated with the projection of
x onto the orthogonal basis vectors p

j
, with respect to (., .)A.

15

• The next approximate solution, or iterate, xk+1, of course has the same form
as xk, with a change in subscript.

• Consequently,

xk+1 =
k+1∑
j=1

pT
j
b

pT
j
Ap

j

p
j

(35)

= xk +
pT
k+1

b

pT
k+1

Ap
k+1

p
k+1

(36)

= xk + αk+1pk+1
. (37)

• The computation of xk+1 is therefore a simple correction to xk;

• Only one additional coefficient, αk+1, needs to be computed to update xk
and this coefficient depends only upon the current search direction p

k+1
and

the initial residual, b.

• Thus, (37) gives a two-term recurrence relation for xk implying that there
is no need to refer to the entire space Vk to compute successive approxima-
tions, xk.

• We emphasize that the simple recurrence (37) holds for any A-conjugate
(i.e., A-orthogonal) basis and only for A-conjugate bases.

16

• The essence of the projection procedure is the following:

– Choose p
k
∈ Vk 6∈ Vk−1 such that p

k
Ap

j
= 0, j < k.

– Compute αk =
pT
k
b

pT
k
Ap

k

=
pT
k
(b−Axk−1)

pT
k
Ap

k

=
pT
k
rk−1

pT
k
Ap

k

– Update solution: xk = xk−1 + αkpk.

– Update residual: rk = rk−1 − αkApk.

17

• Here, we have introduced the important (computable!) residual vector,

rk := b − Axk = Ax − Axk = Aek, (38)

with the error vector, ek := x− xk.

• The residual vector is thus a direct measure of the current iteration error
(the only one available, in fact).

• It can be computed in a stable recursive way using (37).

• Let wk := Ap
k
, which is need in the denominator of (36).

• Then the last three steps of our A-conjugate projector will be of the form

wk = Ap
k
, αk =

pT
k
rk−1

pT
k
wk

(39)

xk = xk−1 + αkpk (40)

rk = rk−1 − αkwk. (41)

18

Generating Pk

• More generaly, given any linearly-independent approximation space Vk =
span{v1, v2, . . . , vk}, we generate the requisite A-conjugate search direction
pk using the following Gram-Schmidt procedure.

p
k

= vk − ΠA(Pk−1, vk) (42)

= vk −
k−1∑
j=1

p
j
βj (43)

with

βj =
(p

j
, vk)A

(p
j
, p

j
)A

=
vTk Apj
pT
j
Ap

j

. (44)

• Thus, p
k

is essentially vk minus the A-orthogonal projection of vk onto
R(Pk−1)=span{Vk−1}.

19

Krylov Subspace Projection Methods

• Note that computation of the projection in (36) requires matrix vector prod-
ucts of the form Ap

j
.

• Consequently, we can choose the Krylov subspace

Kk(A; b) := {b , Ab , . . . , Ak−1b} (45)

as our subspace Vk.
It is clear that if p

1
= b, then p

2
will be a linear combination of b and Ab.

Since Ab is required in the minimization over V1 there is no additional cost
(in terms of matrix-vector products) associated with forming p

2
.

20

• An important property of the residual vector rk is that it is L2-orthogonal
to the search space Vk, which follows because ek is A-orthogonal to Vk.

• For all v ∈ Vk,

0 = vTAek = vTrk. (46)

• Thus, Rk := [r0 r1 . . . rk−1] is an orthogonal basis and we can use it as an
approximation space.

• That is, take Vk := R(Rk).

• If our initial guess x0 = 0, we have r0 = b.

• Starting with v1 = r0, successively construct new basis vectors from the
residual vectors.

• This will lead to a Krylov subspace approximation, Vk = Kk(A; b).

• Because we are using projection (unlike Jacobi iteration), we refer to such
schemes as Krylov subspace projection (KSP) methods.

21

• Combining the choice Vk = R(Rk) with our previous projection steps leads
to Version 1 of our KSP, which is a variant of conjugate gradient iteration.

• Starting with x0 = 0, p
0

= 0, w0 = 0, r0 = b,

for k = 1, . . . , kmax (47)

p
k

= rk−1 −
k−1∑
j=1

p
j
βj, βj =

rTk−1wj

pT
j
wj

(48)

wk = Ap
k
, αk =

pT
k
rk−1

pT
k
wk

(49)

xk = xk−1 + αkpk (50)

rk = rk−1 − αkwk. (51)

• It is common to terminate when ‖rk‖2 ≤ tol, which of course corresponds to
‖ek‖ATA ≤ tol, but other stopping criteria are possible.

• A critical observation is that pT
i
Ap

j
= pT

i
wj = 0 for all i 6= j. From this

it is easy to show that βj = 0 for all j < k − 1 in (48), such that we do not
need to store all the p

j
and wj vectors.

• Thus, the conjugate gradient (CG) algorithm constructs the best-fit approxi-
mation for xk ∈ lPk−1(A)b, with respect to the A-norm, using only O(n) work
and storage.

22

• A condensed variant of CG is given below. Starting with x = 0, p = 0,
w = 0, r = b, and ρ1 = 1;

for k = 1, . . . , kmax (52)

ρ0 = ρ1, ρ1 = rTr (53)

β =
ρ1
ρ0

(54)

p = r + βp, (55)

w = Ap, α =
ρ1
pTw

(56)

x = x + αp (57)

r = r − αw. (58)

• Notice that the storage for this unpreconditioned CG code is 4n: n values
each for x, r, p, and w, plus whatever storage is required to effect the action
of A upon p.

• On a parallel computer, the time-consuming parts of the algorithm are pri-
marily the matrix-vector product, w = Ap, and the inner-products, rTr and
pTw.

• In the preconditioned variant it’s often the case that applying the precondi-
tioner is the most expensive step.

23

Short-Term Recurrence for Orthogonalization

• Let’s summarize the basic space relationships.

• From (55) we have that

p
k
∈ [r0 r1 . . . rk−1] = Rk, (59)

where for conciseness we imply that, for any matrix Ck, c ∈ Ck means that
c is in, R(Ck), which is the column space of Ck.

• So, we have

p
k
∈ [p

1
p
2
. . . p

k
] = Pk

∈ [r0 r1 . . . rk−1] = Rk

∈ [b Ab . . . Ak−1b] = Kk(A, b).

(60)

• The range of the matrices Pk and Rk are consequently the same and equal
to the Krylov subspace, Kk(A, b).

• From rk ≡ Aek and the best fit property of xk, we have

0 = eTkAPk = (Aek)
TPk = rTkPk, (61)

which is to say that the residual rk is L2-orthogonal to the search space, Pk.

• Note that Ap
j
∈ Pk for j = 1, . . . , k − 1.

• Consequently,

pT
j
Ark−1 = 0, j = 1, . . . , k − 1. (62)

• So we find that βj = 0 for j = 1, . . . , k − 2 in (48).

• Moreover,

pT
k−1Ark−1 6= 0. (Why?) (63)

24

Key Take-Aways: A SPD

• Richardson (Jacobi) / CG share the same approximation space, Kk(A; b)

• CG produces the best-fit, ‖x− xk‖A ≤ ‖x− v‖A, ∀ v ∈ Kk.

• For any approximation space, Vk, the best-fit appoximation is the unique xk
satisfying, for all v ∈ Vk,

(v, xk)A = (v, x)A.

• If the columns of Pk := [p
1
p
2
· · · p

k
] satisfy

p
k
∈ Vk, (64)

pT
i
Ap

j
= 0, i 6= j, (65)

then the projection can be computed using a short-term recurrence,

xk = xk−1 +
(p

k
, x)A

(p
k
, p

k
)A
,

which is computable.

• If the columns of Vk = Kk, than the orthogonalization (65) can also be com-
puted with a short-term recurrence.

• In this case, the work and storage for CG is O(n) per iteration.

25

