Projection-Based Iterative Methods, I

Introduction

- We wish to develop an iterative solution method for the system $A\underline{x} = \underline{b}$, where $A \in \mathbb{R}^{n \times n}$ is assumed to symmetric positive definite (SPD) unless otherwise indicated.
- Our main interest in iterative methods is for *matrix-free* applications, in which one does not have explicit access to the matrix A but instead simply has a black box that, given a vector \underline{p} returns another vector $\underline{w} = A\underline{p}$.
- To introduce the topic, we make three observations about Jacobi relaxation,

$$\underline{x}_{k+1} = \underline{x}_k + D^{-1}(\underline{b} - A\underline{x}_k) \quad , \tag{1}$$

where $D = \text{diag}\{a_{ii}\}$.

• Observation 1: Subtracting (1) from $\underline{x} = \underline{x} + D^{-1}(\underline{b} - A\underline{x})$ yields the associated equation for the error, $\underline{e}_k := \underline{x} - \underline{x}_k$,

$$\underline{e}_{k+1} = (I - D^{-1}A) \underline{e}_k, \qquad (2)$$

or

$$\underline{e}_k = (I - D^{-1}A)^k \underline{e}_0. \tag{3}$$

- For convergence, we require $\rho(I D^{-1}A) < 1$, where, for any matrix C with eigenvalues λ_i , $\rho(C) = max_i |\lambda_i|$ is the *spectral radius* of C.
- Convergence will be rapid if $\rho(I D^{-1}A) \ll 1$.

• Observation 2: With $\underline{x}_0 = 0$ we have $\underline{e}_0 = \underline{x}$. Using the error equation (3) we can generate an explicit polynomial form for \underline{x}_k :

$$\underline{x} - \underline{x}_k = (I - D^{-1}A)^k \underline{x}$$
$$= \left[I - a_1 D^{-1}A - a_2 (D^{-1}A)^2 - \dots - a_k (D^{-1}A)^k \right] \underline{x}, \qquad (4)$$

from which

$$\underline{x}_{k} = \left[a_{1}I + a_{2}D^{-1}A^{2} + \dots + a_{k}(D^{-1}A)^{k-1}\right]D^{-1}\underline{b}$$
(5)

$$\in K_k(D^{-1}A; D^{-1}\underline{b}).$$
(6)

- Here, K_k denotes the Krylov subspace.
- For any matrix $C \in \mathbb{R}^{n \times n}$ and vector $\underline{v} \in \mathcal{R}^n$, we define

$$K_k(C,\underline{v}) := span\left\{\underline{v}, C\underline{v}, C^2\underline{v}, \dots C^{k-1}\underline{v}\right\} = \mathbb{P}_{k-1}(C)\underline{c}, \qquad (7)$$

with \mathbb{P}_{k-1} denoting the space of polynomials of degree $\leq k-1$ in the argument.

- Observation 3: The polynomials (3) and (5) do not reflect any properties of our particular D^{-1} , A, or <u>b</u>. The polynomial coefficients a_j derive from the binomial expansion for $(I-D^{-1}A)^k$ and are thus not likely to be optimal.
- The projection methods developed below (of which conjugate gradients and GMRES are two of the most common examples) allow us to find the *best fit*, $\underline{x}_k \in K_k$ such that

$$\|\underline{x} - \underline{x}_k\|_* \leq \|\underline{x} - \underline{v}\|_* \,\forall \underline{v} \in K_k, \tag{8}$$

for a particular norm $\|\cdot\|_*$ to be determined.

• If A is SPD, projection methods have a per-iteration cost that is comparable to Jacobi relaxation (1) but that require far fewer iterations to converge.

- Before proceeding, we make two comments about the matrix pair D and A.
- First, we can relax the assumption that *D* is the diagonal of *A* and instead assume that it is some more general preconditioner (perhaps also SPD if *A* is).
- Second, we can also rescale the system in terms of a matrix for which D = I. If $a_{ii} > 0$ (e.g., if A is SPD), then $A\underline{x} = \underline{b}$ is equivalent to $\tilde{A}\underline{\tilde{x}} = \underline{\tilde{b}}$ with $\tilde{a}_{ii} \equiv 1$ and

$$\tilde{A} := D^{-\frac{1}{2}} A D^{-\frac{1}{2}}, \qquad \underline{\tilde{x}} := D^{\frac{1}{2}} \underline{x}, \qquad \underline{\tilde{b}} := D^{-\frac{1}{2}} \underline{b}.$$

• Consequently, we develop the projection schemes initially without reference to the preconditioner and seek $\underline{x}_k \in K_k(A; \underline{b})$. We will revisit preconditioning in a separate lecture.

Projection methods

- Projection methods are based upon the idea of minimizing the error between \underline{x} and the kth iterate, \underline{x}_k , in an appropriately chosen norm.
- \underline{x}_k is selected from a k-dimensional subspace of \mathbb{R}^n denoted by

$$\mathcal{V}_k = span\{\underline{v}_1 \, \underline{v}_2 \, \dots \, \underline{v}_k\}.$$

- At present, we make no assumptions about \mathcal{V}_k aside from the fact that basis vectors, or *search directions*, \underline{v}_j , should be linearly independent and hence a spanning set of \mathcal{V}_k .
- Note that the minimization problem is well-defined even in the absence of linear independence, but the methods prescribed below would break down and stability is potentially compromised.

 \bullet To derive the projection-based approximation we start with

$$\underline{x}_k = \sum_{j=1}^k \beta_j \underline{v}_j \in \mathcal{V}_k.$$
(9)

• Our task is to find coefficients β_j such that

$$\|\underline{x} - \underline{x}_k\|_{w} \leq \|\underline{x} - \underline{w}\|_{w} \,\forall \underline{w} \in \mathcal{V}_k.$$
(10)

 \bullet To be concrete, for some SPD matrix W, define

$$(\underline{v}, \underline{w})_{w} := \underline{v}^{T} W \underline{w}$$
(11)

$$\left\|\underline{v}\right\|_{w} := \left(\underline{v}, \underline{v}\right)_{w}^{\frac{1}{2}} \tag{12}$$

• Later, we will choose W = A if A is SPD or $W = A^T A$ if A is nonsymmetric.

$Minimization \Longleftrightarrow Orthogonalization$

- We need to derive a set of equations to find the best-fit, \underline{x}_k .
- We start with its definining property.
- Define $\underline{e}_k = \underline{x} \underline{x}_k$ and \underline{x}_k as the *minimizer* satisfying

$$\|\underline{x} - \underline{x}_k\|_{w} \leq \|\underline{x} - \underline{w}\|_{w} \,\forall \underline{w} \in \mathcal{V}_k \tag{13}$$

$$= \|\underline{x} - (\underline{x}_k + \epsilon \underline{v})\|_{w}.$$
(14)

The second expression holds for any $\epsilon \in \mathbb{R}^1$ and $\underline{v} \in \mathcal{V}_k$.

• Replacing $\underline{x} - \underline{x}_k =: \underline{e}_k$ and expanding the bilinear forms, the projection requirement (13) becomes

$$\begin{aligned} \|\underline{e}_{k}\|_{w}^{2} \leq \|\underline{e}_{k} + \epsilon \underline{v}\|_{w}^{2} &= (\underline{e}_{k} + \epsilon \underline{v})^{T} W(\underline{e}_{k} + \epsilon \underline{v}) \\ &= \underline{e}_{k}^{T} W \underline{e}_{k}^{T} + \epsilon \underline{v}^{T} W \underline{e}_{k} + \epsilon \underline{e}_{k}^{T} W \underline{v} + \epsilon^{2} \underline{v}^{T} W \underline{v}, \\ &= \|\underline{e}_{k}\|_{w}^{2} + 2\epsilon \underline{v}^{T} W \underline{e}_{k} + \epsilon^{2} \|\underline{v}\|_{w}^{2} \quad \forall (\epsilon, \underline{v} \in \mathcal{V}_{k}). \end{aligned}$$
(15)

• From the final inequality and the fact that ϵ can be of arbitrary sign it is clear that the error will be minimized if and only if

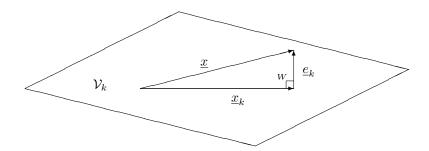
$$\underline{v}^T W \underline{e}_k = 0 \ \forall \, \underline{v} \in \mathcal{V}_k. \tag{16}$$

Otherwise, it is always possible to find a value of ϵ such that the expression on the right of (15) is smaller than $\|\underline{e}_k\|_{w}$, which is not possible if \underline{x}_k is the minimizer of $\|\underline{x} - \underline{v}\|_{w}^2$. • We conclude that a necessary condition for \underline{x}_k to be the best fit is

$$(\underline{v}, \underline{e}_k)_{w} = 0 \qquad \forall \, \underline{v} \in \mathcal{V}_k.$$
(17)

We say that the error is *W*-orthogonal to \mathcal{V}_k ($\underline{e}_k \perp_w \mathcal{V}_k$) and that \underline{x}_k is the projection of \underline{x} onto \mathcal{V}_k .

• This situation is illustrated in the accompanying figure.



• Thus, we have the following important concept:

Minimization \equiv Orthogonal Projection.

• An equivalent expression is that the *k*th iterate satisfies the *projection statement*,

$$(\underline{v}, \underline{x}_k)_W = (\underline{v}, \underline{x})_W, \qquad \forall \, \underline{v} \in \mathcal{V}_k.$$
(18)

- \underline{x}_k being the minimizer of $||\underline{e}_k||_w$ is equivalent to \underline{e}_k being orthogonal to \mathcal{V}_k (with respect to $(.,.)_w$).
- Note that in the limit of $k \to n$, we have $\mathcal{V}_k = \mathbb{R}^n$, implying that \underline{e}_k is orthogonal to all \mathbb{R}^n .
- This can only be true if $\underline{e}_k = \underline{0}$ which implies $\underline{x}_k = \underline{x}$.
- The projection scheme is exact in this limit, modulo round-off error. (CG was originally viewed as a *direct solver*.)

Solution Generation

- We can use (16) to generate a system of equations to find the unknown basis coefficients β_i in (9).
- We'll assume that A is SPD and will minimize in the A-norm (i.e., W = A).
- Moreover, we'll assume that we have a basis,

$$\operatorname{span}\{\underline{p}_1, \underline{p}_2, \dots, \underline{p}_k\} = \operatorname{span}\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k\} = \mathcal{V}_k,$$

with unknown basis coefficients α_j .

- Denoting these two sets of vectors by the $n \times k$ matrices P_k and V_k , respectively, the change of basis will allow us to transform a given set V_k to the set P_k that will have appropriate orthogonality properties.
- We note that the range, or column spaces, are the same, $\mathcal{R}(P_k) = \mathcal{R}(V_k)$, but the bases (the actual columns) are different.
- For now, we proceed assuming we have the set P_k in hand.

• Starting with

$$\underline{x}_k = \sum_{j=1}^k \underline{p}_j \alpha_j, \qquad (19)$$

(16) implies, for i = 1, ..., k,

$$(\underline{p}_i, \underline{e}_k)_A := \underline{p}_i^T A \underline{e}_k = 0$$
(20)

$$\underline{p}_i^T A \left(\underline{x} - \underline{x}_k \right) = 0 \tag{21}$$

$$\underline{p}_i^T A \underline{x}_k = \underline{p}_i^T A \underline{x}$$
(22)

$$\underline{p}_i^T A \underline{x}_k = \underline{p}_i^T \underline{b} \tag{23}$$

$$\sum_{j=1}^{k} \underline{p}_{i}^{T} A \underline{p}_{j} \alpha_{j} = \underline{p}_{i}^{T} \underline{b}, \qquad (24)$$

which constitutes k equations in k unknown basis coefficients α_j , $j = 1, \ldots, k$.

• Defining

$$A_k = P_k^T A P_k \tag{25}$$

$$P_k = [\underline{p}_1, \dots, \underline{p}_k] \tag{26}$$

$$\underline{\alpha} = [\alpha_1, \dots, \alpha_k]^T \tag{27}$$

$$\underline{b}_k = [\underline{p}_1^T \underline{b}, \dots, \underline{p}_k^T \underline{b}]^T, \qquad (28)$$

we have

$$A_k\underline{\alpha} = \underline{b}_k \quad . \tag{29}$$

• Note that, because P_k is of full rank (the \underline{p}_i 's are linearly independent) and A is symmetric positive definite (SPD), A_k is also SPD and the $k \times k$ system in (29) is solvable.

• Once $\underline{\alpha}$ is found, \underline{x}_k is computed using (19),

$$\underline{x}_k = P_k \underline{\alpha} = P_k (P_k^T A P_k)^{-1} P_k^T \underline{b}$$
(30)

$$= P_k (P_k^T A P_k)^{-1} P_k^T A \underline{x}.$$
(31)

- The expression on the right of (31) is a classic projection statement.
- It represents the A-orthogonal projection of \underline{x} onto $\mathcal{R}(P_k)$.
- The solution \underline{x}_k is in $\mathcal{R}(P_k)$, the units of A and A^{-1} cancel out, as do the units of P_k .
- Thus, \underline{x}_k has the same units as \underline{x} , as it should.
- It is shorter in the A-norm than \underline{x} , $\|\underline{x}_k\|_A < \|\underline{x}_k\|_A$, unless \underline{x} is in $\mathcal{R}(P_k)$, in which case $\underline{x}_k = \underline{x}$.

Basis for \mathcal{V}_k

- We now seek a procedure for generating the basis set $\{\underline{p}_j\}$.
- The minimization procedure (29) is greatly simplified if the basis vectors are A-conjugate, implying:

$$\underline{p}_i^T A \underline{p}_j = 0 \qquad i \neq j \quad . \tag{32}$$

• This results in A_k being diagonal, as its entries are simply $(A_k)_{ij} = \underline{p}_i^T A \underline{p}_j$, and leads immediately to a closed form expression for α_j :

$$\alpha_j = \frac{\underline{p}_j^T \underline{b}}{\underline{p}_j^T A \underline{p}_j} \quad , \tag{33}$$

from which,

$$\underline{x}_{k} = \sum_{j=1}^{k} \frac{\underline{p}_{j}^{T} \underline{b}}{\underline{p}_{j}^{T} A \underline{p}_{j}} \underline{p}_{j} = \sum_{j=1}^{k} \frac{(\underline{p}_{j}, \underline{x})_{A}}{(\underline{p}_{j}, \underline{p}_{j})_{A}} \underline{p}_{j}.$$
(34)

The second expression is the familiar form associated with the projection of \underline{x} onto the orthogonal basis vectors \underline{p}_j , with respect to $(.,.)_A$.

- The next approximate solution, or iterate, \underline{x}_{k+1} , of course has the same form as \underline{x}_k , with a change in subscript.
- Consequently,

$$\underline{x}_{k+1} = \sum_{j=1}^{k+1} \frac{\underline{p}_j^T \underline{b}}{\underline{p}_j^T A \underline{p}_j} \underline{p}_j$$
(35)

$$= \underline{x}_{k} + \frac{\underline{p}_{k+1}^{T}\underline{b}}{\underline{p}_{k+1}^{T}A\underline{p}_{k+1}}\underline{p}_{k+1}$$
(36)

$$= \underline{x}_k + \alpha_{k+1}\underline{p}_{k+1} \quad . \tag{37}$$

- The computation of \underline{x}_{k+1} is therefore a simple correction to \underline{x}_k ;
- Only one additional coefficient, α_{k+1} , needs to be computed to update \underline{x}_k and this coefficient depends only upon the current search direction \underline{p}_{k+1} and the initial residual, \underline{b} .
- Thus, (37) gives a two-term *recurrence* relation for \underline{x}_k implying that there is no need to refer to the entire space \mathcal{V}_k to compute successive approximations, \underline{x}_k .
- We emphasize that the simple recurrence (37) holds for any A-conjugate (i.e., A-orthogonal) basis and *only* for A-conjugate bases.

- The essence of the projection procedure is the following:
 - Choose $\underline{p}_k \in \mathcal{V}^k \not\in \mathcal{V}^{k-1}$ such that $\underline{p}_k A \underline{p}_j = 0, j < k$.
 - Compute $\alpha_k = \frac{\underline{p}_k^T \underline{b}}{\underline{p}_k^T A \underline{p}_k} = \frac{\underline{p}_k^T (\underline{b} A \underline{x}_{k-1})}{\underline{p}_k^T A \underline{p}_k} = \frac{\underline{p}_k^T \underline{r}_{k-1}}{\underline{p}_k^T A \underline{p}_k}$
 - Update solution: $\underline{x}_k = \underline{x}_{k-1} + \alpha_k \underline{p}_k$.
 - Update residual: $\underline{r}_k = \underline{r}_{k-1} \alpha_k A \underline{p}_k$.

• Here, we have introduced the important (computable!) residual vector,

$$\underline{r}_k := \underline{b} - A\underline{x}_k = A\underline{x} - A\underline{x}_k = A\underline{e}_k, \tag{38}$$

with the error vector, $\underline{e}_k := \underline{x} - \underline{x}_k$.

- The residual vector is thus a direct measure of the current iteration error (the only one available, in fact).
- It can be computed in a stable recursive way using (37).
- Let $\underline{w}_k := A\underline{p}_k$, which is need in the denominator of (36).
- Then the last three steps of our A-conjugate projector will be of the form

$$\underline{w}_{k} = A\underline{p}_{k}, \quad \alpha_{k} = \frac{\underline{p}_{k}^{T}\underline{r}_{k-1}}{\underline{p}_{k}^{T}\underline{w}_{k}}$$
(39)

$$\underline{x}_k = \underline{x}_{k-1} + \alpha_k \underline{p}_k \tag{40}$$

$$\underline{r}_k = \underline{r}_{k-1} - \alpha_k \underline{w}_k. \tag{41}$$

Generating P_k

• More generaly, given any linearly-independent approximation space $\mathcal{V}_k = \operatorname{span}\{\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_k\}$, we generate the requisite A-conjugate search direction p_k using the following Gram-Schmidt procedure.

$$\underline{p}_k = \underline{v}_k - \Pi_A(P_{k-1}, \underline{v}_k) \tag{42}$$

$$= \underline{v}_k - \sum_{j=1}^{k-1} \underline{p}_j \beta_j \tag{43}$$

with

$$\beta_j = \frac{(\underline{p}_j, \underline{v}_k)_A}{(\underline{p}_j, \underline{p}_j)_A} = \frac{\underline{v}_k^T A \underline{p}_j}{\underline{p}_j^T A \underline{p}_j}.$$
(44)

• Thus, \underline{p}_k is essentially \underline{v}_k minus the A-orthogonal projection of \underline{v}_k onto $\mathcal{R}(P_{k-1}) = \operatorname{span}\{\mathcal{V}_{k-1}\}.$

Krylov Subspace Projection Methods

- Note that computation of the projection in (36) requires matrix vector products of the form $A\underline{p}_i$.
- Consequently, we can choose the Krylov subspace

$$K_k(A;b) := \{\underline{b}, A\underline{b}, \dots, A^{k-1}\underline{b}\}$$
(45)

as our subspace \mathcal{V}_k .

It is clear that if $\underline{p}_1 = \underline{b}$, then \underline{p}_2 will be a linear combination of \underline{b} and $A\underline{b}$. Since $A\underline{b}$ is required in the minimization over \mathcal{V}_1 there is no additional cost (in terms of matrix-vector products) associated with forming \underline{p}_2 .

- An important property of the residual vector \underline{r}_k is that it is L^2 -orthogonal to the search space \mathcal{V}_k , which follows because \underline{e}_k is A-orthogonal to \mathcal{V}_k .
- For all $\underline{v} \in \mathcal{V}_k$,

$$0 = \underline{v}^T A \underline{e}_k = \underline{v}^T \underline{r}_k. \tag{46}$$

- Thus, $R_k := [\underline{r}_0 \ \underline{r}_1 \ \dots \ \underline{r}_{k-1}]$ is an orthogonal basis and we can use it as an approximation space.
- That is, take $\mathcal{V}_k := \mathcal{R}(R_k)$.
- If our initial guess $\underline{x}_0 = 0$, we have $\underline{r}_0 = \underline{b}$.
- Starting with $\underline{v}_1 = \underline{r}_0$, successively construct new basis vectors from the residual vectors.
- This will lead to a Krylov subspace approximation, $\mathcal{V}_k = K_k(A; \underline{b})$.
- Because we are using *projection* (unlike Jacobi iteration), we refer to such schemes as *Krylov subspace projection* (KSP) methods.

- Combining the choice $\mathcal{V}_k = \mathcal{R}(R_k)$ with our previous projection steps leads to Version 1 of our KSP, which is a variant of conjugate gradient iteration.
- Starting with $\underline{x}_0 = 0$, $\underline{p}_0 = 0$, $\underline{w}_0 = 0$, $\underline{r}_0 = \underline{b}$,
 - for $k = 1, \dots, k_{\max}$ (47)

$$\underline{p}_{k} = \underline{r}_{k-1} - \sum_{j=1}^{k-1} \underline{p}_{j} \beta_{j}, \qquad \beta_{j} = \frac{r_{k-1}^{T} \underline{w}_{j}}{\underline{p}_{j}^{T} \underline{w}_{j}}$$
(48)

$$\underline{w}_{k} = A\underline{p}_{k}, \quad \alpha_{k} = \frac{\underline{p}_{k}^{T}\underline{r}_{k-1}}{\underline{p}_{k}^{T}\underline{w}_{k}}$$

$$\tag{49}$$

$$\underline{x}_k = \underline{x}_{k-1} + \alpha_k \underline{p}_k \tag{50}$$

$$\underline{r}_k = \underline{r}_{k-1} - \alpha_k \underline{w}_k. \tag{51}$$

- It is common to terminate when $||r_k||_2 \leq tol$, which of course corresponds to $||e_k||_{A^T_A} \leq tol$, but other stopping criteria are possible.
- A critical observation is that $\underline{p}_i^T A \underline{p}_j = \underline{p}_i^T \underline{w}_j = 0$ for all $i \neq j$. From this it is easy to show that $\beta_j = 0$ for all j < k 1 in (48), such that we do not need to store all the \underline{p}_j and \underline{w}_j vectors.
- Thus, the conjugate gradient (CG) algorithm constructs the best-fit approximation for $\underline{x}_k \in \mathbb{P}_{k-1}(A)\underline{b}$, with respect to the A-norm, using only O(n) work and storage.

• A condensed variant of CG is given below. Starting with $\underline{x} = 0$, $\underline{p} = 0$, $\underline{w} = 0$, $\underline{r} = \underline{b}$, and $\rho_1 = 1$;

for $k = 1, \dots, k_{\max}$ (52)

$$\rho_0 = \rho_1, \qquad \rho_1 = \underline{r}^T \underline{r} \tag{53}$$

$$\beta = \frac{\rho_1}{\rho_0} \tag{54}$$

$$\underline{p} = \underline{r} + \beta \underline{p}, \tag{55}$$

$$\underline{w} = A\underline{p}, \quad \alpha = \frac{\rho_1}{p^T \underline{w}}$$
(56)

$$\underline{x} = \underline{x} + \alpha \underline{p} \tag{57}$$

$$\underline{r} = \underline{r} - \alpha \underline{w}. \tag{58}$$

- Notice that the storage for this unpreconditioned CG code is 4n: n values each for $\underline{x}, \underline{r}, \underline{p}$, and \underline{w} , plus whatever storage is required to effect the action of A upon p.
- On a parallel computer, the time-consuming parts of the algorithm are primarily the matrix-vector product, $\underline{w} = A\underline{p}$, and the inner-products, $\underline{r}^T\underline{r}$ and $p^T\underline{w}$.
- In the preconditioned variant it's often the case that applying the preconditioner is the most expensive step.

Short-Term Recurrence for Orthogonalization

- Let's summarize the basic space relationships.
- From (55) we have that

$$\underline{p}_k \in [\underline{r}_0 \, \underline{r}_1 \, \dots \, \underline{r}_{k-1}] = R_k, \tag{59}$$

where for conciseness we imply that, for any matrix C_k , $\underline{c} \in C_k$ means that \underline{c} is in, $\mathcal{R}(C_k)$, which is the column space of C_k .

• So, we have

$$\underline{p}_{k} \in [\underline{p}_{1} \ \underline{p}_{2} \ \dots \ \underline{p}_{k}] = P_{k}
\in [\underline{r}_{0} \ \underline{r}_{1} \ \dots \ \underline{r}_{k-1}] = R_{k}$$

$$\in [\underline{b} \ A\underline{b} \ \dots \ A^{k-1}\underline{b}] = K_{k}(A, \underline{b}).$$
(60)

- The range of the matrices P_k and R_k are consequently the same and equal to the Krylov subspace, $K_k(A, \underline{b})$.
- From $\underline{r}_k \equiv A\underline{e}_k$ and the best fit property of \underline{x}_k , we have $0 = \underline{e}_k^T A P_k = (A\underline{e}_k)^T P_k = \underline{r}_k^T P_k,$

which is to say that the residual \underline{r}_k is L^2 -orthogonal to the search space, P_k .

- Note that $A\underline{p}_j \in P_k$ for $j = 1, \ldots, k 1$.
- Consequently,

$$\underline{p}_j^T A \underline{r}_{k-1} = 0, \quad j = 1, \dots, k-1.$$

$$(62)$$

(61)

- So we find that $\beta_j = 0$ for $j = 1, \ldots, k 2$ in (48).
- Moreover,

$$\underline{p}_{k-1}^T A \underline{r}_{k-1} \neq 0.$$
 (Why?) (63)

Key Take-Aways: A SPD

- Richardson (Jacobi) / CG share the same approximation space, $K_k(A; \underline{b})$
- CG produces the *best-fit*, $\|\underline{x} \underline{x}_k\|_A \leq \|\underline{x} \underline{v}\|_A, \forall \underline{v} \in K_k$.
- For any approximation space, \mathcal{V}_k , the best-fit appoximation is the unique \underline{x}_k satisfying, for all $\underline{v} \in \mathcal{V}_k$,

$$(\underline{v}, \underline{x}_k)_A = (\underline{v}, \underline{x})_A.$$

• If the columns of $P_k := [\underline{p}_1 \ \underline{p}_2 \ \cdots \underline{p}_k]$ satisfy

$$\underline{p}_k \in \mathcal{V}_k, \tag{64}$$

$$\underline{p}_i^T A \underline{p}_j = 0, \quad i \neq j, \tag{65}$$

then the projection can be computed using a short-term recurrence,

$$\underline{x}_k = \underline{x}_{k-1} + \frac{(\underline{p}_k, \underline{x})_A}{(\underline{p}_k, \underline{p}_k)_A},$$

which is *computable*.

- If the columns of $\mathcal{V}_k = K_k$, than the orthogonalization (65) can also be computed with a short-term recurrence.
- In this case, the work and storage for CG is O(n) per iteration.