
Projection-Based Iterative Methods, II

Convergence of CG

The CG convergence analysis proceeds from the following observations.

• The kth iterate, xk is the best possible approximation inKk(A; b) = span{b Ab . . . Ak−1b}
• xk can be expressed as a polynomial in A as xk = c1b + c2Ab + · · · +
ckA

k−1b = P k−1
CG (A)b, where the unknown coefficients cj are optimally deter-

mined by the conjugate gradient algorithm.

Note that P k−1
CG is generally an unknown polynomial but it has the special prop-

erty that

‖x− P k−1
CG (A)b‖A ≤ ‖x− P k−1(A)b‖A ∀ P k−1(A) ∈ lPk−1(A). (1)

To analyze the convergence behavior, notice that the error,

ek = x− xk = A−1(b− Axk) = A−1rk. (2)

Thus the A-norm of the error, which is minimized by our approximation, is given
by:

‖ek‖2A = eTkAek (3)

= rTkA
−1rk = ‖rk‖2A−1 .

Inserting the polynomial representation for xk into the expression for rk, we have:

rk = b − Axk (4)

= b − c1Ab − c2A
2b − . . . − ckA

kb .

Note that the degrees of freedom in (4) are represented by the cj’s. Thus, out
of all possible polynomials having the form P k

1 (t) = 1 + γ1t + . . . + γkt
k (i.e.,

those satisfying P k
1 (0) = 1), the conjugate gradient algorithm constructs the one

which minimizes ‖ek‖2:

‖ek‖2A = rTkA
−1rk (5)

= bT (I − AP k−1
CG )TA−1(I − AP k−1

CG )b

≤ bT [P k
1 (A)]TA−1P k

1 (A)b ,
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To establish an upper bound on the error, we can choose the particular polyno-
mial P k

1 (t) = T̃k(t), the Chebyshev polynomial of degree k which is scaled and
translated to satisfy T̃k(0) = 1. This choice is motivated by the fact that, for
a given scaling (in this case that P1(0) = 1), one can construct a Chebyshev
polynomial which minimizes the maximum amplitude over all polynomials in
lP1
k(x) for x in a given interval. Here we will consider the interval [λ1, λn], where

λ1 ≤ λ2 ≤ · · · ≤ λn are the n positive eigenvalues of A.

Figure 1 shows an example of error polynomials of the form P 1
k (λ) for λ ∈ [0:2]

in which the translated/scaled Chebyshev polynomial of degree k minimizes the
maximum amplitude on the interval [λ1:λn]=[0.2:1.8]. Notice that, on [λ1 : λn]
the maximum of |P 1

k | for the Chebyshev polynomial (in red, labeled “CG”) is
smaller than that associated with Jacobi iteration, which is given by (1 − λ)k.
Since CG yields a better approximation than any other polynomial of degree k
then the error will be ≤ the error induced by a Chebyshev polynomial, and
certainly better than the error associated with Jacobi iteration for any value of
k > 1. The essence of the convergence proof is to use the computable maxima
of the Chebyshev polynomials to bound the error for CG.

Figure 1: Comparison of error distribution for λj ∈ [0.2:1.8] for error polynomials based on Jacobi iteration vs.
Chebyshev distribution. The CG error distribution will be smaller than the Chebyshev one. (Why?)
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We begin by considering a spectral decomposition of the initial residual:

b =
n∑
i=1

b̂izi , (6)

where zi is the eigenvector of A associated with eigenvalue λi and is normalized
such that

zTi zj = δij , (7)

where δij is the Kronecker delta. Because A is symmetric, it has n orthogonal
eigenvectors spanning lRn and, consequently, there always exists a decomposition
of the form (6). The (arbitrary) scaling of the eigenvectors is established by (7).
We will use the following relationship shortly.

‖x‖2A = ‖A−1b‖2A = (A−1b)TA(A−1b) = bTA−1b =
n∑
i=1

b̂2i
λi
. (8)

Inserting the spectral decomposition (6) of b into the error equation (5) yields

‖ek‖2A ≤

(
n∑
i=1

P k
1 (λi)b̂izi

)T ( n∑
j=1

P k
1 (λj)

b̂j
λj
zj

)
(9)

=

(
n∑
j=1

n∑
i=1

P k
1 (λi)P

k
1 (λj)

b̂i b̂j
λj

zTi zj

)
. (10)

From the orthonormality of the eigenvectors (7) we have:

‖ek‖2A ≤
n∑
i=1

(P k
1 (λi))

2 b̂
2
i

λi
≤

n∑
i=1

M 2 b̂
2
i

λi
= M 2

n∑
i=1

b̂2i
λi

= M 2 ‖x‖2A. (11)

Here, M is a constant corresponding to the maxiumof P k
1 (λi),

M := max
i
|P k

1 (λi)|, (12)

which is the bound we seek. We have

‖ek‖
‖x‖

≤ M = max
i
|P k

1 (λi)| (13)

≤ max
λ1≤λ≤λn

|P k
1 (λ)|. (14)
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Since P k
1 may be any polynomial of degree k satisfying P k

1 (0) = 1 we can
estimate a relatively sharp bound bound by finding a polynomial that minimizes
the right-hand side of (14). That is, find

P k
1 (λ) = argmin

p∈lP1
k

max
λ∈[λ1:λn]

|p(λ)| (15)

The solution to this problem, as is often the case in minimax problems, is given
by a scaled and translated Chebyshev polynomial, as mentioned previously and
discussed further below. Before proceeding with that analysis, however, we note
that (13) provides a sharper estimate than given by the bounds of the minimizing
polynomial. Specifically, if most of the eigenvalues are clustered in a small region,
then a polynomial that passes through the outlying λis and that is also small
over the clustered region would yield a tighter estimate than the Chebyshev
result presented below. We also note that if some of the b̂j’s are zero then they
would nominally be excluded from the sums that are present in (9), save that
round-off error generally prevents their contribution from being truly void.

A more common scenario, however, is that A has eigenvalues with multiplicity
> 1. Assume that A has m < n unique eigenvalues, {λ1 < λ2 < . . . < . . . λm }.
In this case, b has an equivalent spectral decomposition

b =
m∑
i=1

b̂izi , (16)

where zi is an eigenvector of A associated with eigenvalue λi. Note that any linear
combination of eigenvectors associated with an eigenvalue having multiplicity
greater than one is also an eigenvector. Krylov-subspace solvers to not have
a mechanism to detect this multiplicity since every matrix-vector product will
simply stretch (i.e., without rotating) the original component in the invariant
subspace. The net result is that KSPs converge in at most m ≤ n
iterations, modulo round-off effects.

Chebyshev Polynomials

We turn now to the standard estimate to bound (14). This is a classic minimax
problem which is invariably solved by using Chebyshev polynomials, Tk(x). We
reiterate that (13) provides a tighter error bound because the maximum in (13)
is taken over a discrete set of eigenvalues and this maximum will generally be
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smaller than the maximum found on the continuous interval [λ1, λn]. Conjugate
gradient iteration, therefore, will generally outperform the estimates given below.
The estimates nonetheless tend to be quite accurate in practice, however, because
the discrete eigenvalues are relatively densely packed on [λ1, λn].

The standard Chebyshev polynomials, Tk(x) = cos(k cos−1 x) have the prop-
erty that their k roots on the interval x ∈ [−1, 1] are chosen such that all of their
extrema on that interval are the same. It is straightforward to show that this
also implies that, among all polynomials of degree k satisfying p(x = 1) = 1,
the Chebyshev polynomials minimize maxx∈[−1,1] |p(x)|. Here, we are interested
in minimizing on the interval [λ1, λn], subject to p(0) = 1. Because P k

1 may be
any polynomial of degree k satisfying P k

1 (0) = 1, we are at liberty to choose one
that has the minimal value of M . This is given by the scaled and translated
Chebyshev polynomial,

T̃k(λ) = MTk

(
1 − 2

λ− λ1
λn − λ1

)
. (17)

Since Tk(x) has extrema ±1 on the interval −1 ≤ x ≤ 1, clearly T̃k(λ) has
extrema ±M on the interval λ1 ≤ λ ≤ λn. From the required scaling, T̃k(0) = 1,
we find

M−1 = Tk

(
1 − 2

0− λ1
λn − λ1

)
= Tk

(
λn + λ1
λn − λ1

)
= Tk

(
κ+ 1

κ− 1

)
, (18)

where κ = λn/λ1. It merely remains to evaluate Tk(x) with the appropriate
argument to establish the bound. We do not go through all of the steps here, but
note that the process starts with a representation for the Chebyshev polynomials
when the argument of Tk has modulus > 1,

Tk(x) =
1

2

[
x+

√
x2 − 1

]k
+

1

2

[
x−

√
x2 − 1

]k
. (19)

After a few pages of manipulation, the desired bound is1

M ≤ 2


√

λn
λ1
− 1√

λn
λ1

+ 1


k

= 2

(√
κ − 1√
κ + 1

)k
(conjugate-gradient bound).(20)

If κ� 1, then the number of iterations scales as
√
κ. With a good preconditioner,

however, one can often converge in just a few (e.g., 5–20) iterations.
1See Saad, Iterative Methods for Linear Systems
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The bound (20) is to be contrasted with that for optimal Richardson iteration
and steepest descent, both of which have an error bound of the form [Saad],

‖ek‖A
‖x‖A

≤
(
κ − 1

κ + 1

)k
(Richardson/steepest-descent bound). (21)

Thus, if either of these methods takes 100 iterations, we can expect CG to take
≈ 10 iterations.

Deriving the Bound

We present a sketch of the derivation here. The Taylor series arguments are
formally correct but the results are more precise than they would indicate, as we
mention below. From (18) and (19), we have

M =
2

(a+ b)k + (a− b)k
≤ 2

(a+ b)k
, (22)

where

a =
κ+ 1

κ− 1
(23)

and b =
√
a2 − 1. The inequality (22) will generally be quite sharp as k increases

because (a − b) will be small compared to (a + b). Define ε := κ−1 < 1 and
compute the Taylor series expansion for a and b in terms of ε,

a =
κ+ 1

κ− 1
=

1 + ε

1− ε
(24)

= (1 + ε)(1 + ε+ ε2 + . . . )

= 1 + 2ε+ 2ε2 + . . . (25)

b =
(
a2 − 1

) 1
2 (26)

=
(
1 + 4ε+ 8ε2 + · · · − 1

) 1
2 (27)

=
(
4ε+ 8ε2 + . . .

) 1
2 (28)

= 2
√
ε (1 + ε+ . . . ) . (29)
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Summing a and b and ordering the terms in powers of ε
1
2 , we have

a+ b = 1 + 2
√
ε+ 2ε+ 2ε

3
2 + 2ε2 + . . . (30)

= (1 +
√
ε)(1 +

√
ε+ ε+ ε

3
2 + . . . ) (31)

∼ 1 +
√
ε

1−
√
ε
. (32)

From the preceding result and (22) we have

M ≤ 2

(
1−
√
ε

1 +
√
ε

)k
= 2

(√
κ− 1√
κ+ 1

)k
. (33)

Note that the Taylor expansions used here would only indicate an asymptotic
equivalence (“∼”), but the expressions on the right of (22) and (33) are in fact
equal.
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Eigenvalues from PCG

Consider the following PCG algorithm with A and preconditioner M SPD.

for k = 1 : n (34)

Solve Mzk = rk−1, ρk = zTk rk−1, βk = ρk
ρk−1

, if k=1: βk = 0 (35)

p
k

= zk + βkpk−1 (36)

wk = Ap
k
, γk = pT

k
wk, αk =

ρk
γk

(37)

xk = xk−1 + αkpk (38)

rk = rk−1 − αkwk (39)

end (40)

Let

R = [r0 r1 . . . rk−1], (41)

P = [p
1
p
2
. . . p

k
], (42)

Z = [z1 z2 . . . zk], (43)

and

B =


1 −β2

1 −β3
1 −β4

. . .

 . (44)

Note that P TAP =diag(γi). We also have that Z = PB, so

ZTAZ = T̃ , (45)

where T̃ is a k × k tridiagonal matrix. Moreover, ZTMZ = ZTR =diag(ρi) =:
∆2. From these, we can find approximate eigenvectors and eigenvalues for the
generalized eigenvalue problem,

Asj = λjMsj. (46)

Let’s consider λn, the eigenvalue that maximizes the Rayleigh quotient,

λn = max
s∈lRn

sTAs

sTMs
. (47)
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The approximated value is

λn ≈ max
z∈Z

zTAz

zTMz
= max

y∈lRk

yTZTAZy

yTZTMZy
= max

y∈lRk

yT T̃ y

yT∆2y
= µk, (48)

where µk is the maximum eigenvalue for the k × k eigenvalue problem,

T̃ y
j

= µj∆
2y
j

(49)

Here, ∆2 is a diagonal matrix. Define u = ∆y −→ y = ∆−1u. The right-most
Rayleigh quotient in the preceding equation becomes

µk = = max
u∈lRk

uTTu

uTu
, (50)

where T := ∆−1T̃∆−1.

As a result, PCG is effectively a Lanczos algorithm from which one can ap-
proximate the (extreme) eigenvalues and eigenvectors of (46). The approxima-
tions are given by µj and Zy

j
from solving the small k × k eigenvalue problem

(49).
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