CS556 Quiz 6

Due 5 PM WEDNESDAY, Oct. 16

- **1.** Consider solution of the 1D heat equation, $-u_{xx} = f(x)$, u(0) = u(1) = 0 with E linear finite elements. Answer these two questions for each of the matrices, A_L , \bar{A} , and A.
- What is the dimension of each matrix?
- What is the dimension of the null space?

a.
$$A_L$$
 = block-diag (A^e)
b. \bar{A} = $Q^T A_L Q$
c. A = $R \bar{A} R^T$

2. Consider the finite element discretization of the 1D heat equation, $-u_{xx} = f(x)$ with a Dirichlet condition at x = 0, u(0) = 0, and a Neumann condition at x = L, $u_x(L) = 0$. Suppose L = 10 and E = 5 with uniform element length Δx .

a. What is the stiffness matrix, A, in this case? Derive this by hand. (It is easier to do so in *global* form, rather than by assembling the local stiffness matrix.)

- **b.** How many degrees-of-freedom (unknowns) do you have for this problem?
- **c.** How many degrees-of-freedom do you have when using this same mesh but with Dirichlet boundary conditions at x = 0 and L?