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Conditioning
§ Absolute Condition Number:

The absolute condition number is a property of the problem, which measures
its sensitivity to perturbations in input
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For problem f at input x it is simply the derivative of f at x,
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When considering a space of inputs X it is κabs “ maxxPX
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§ (Relative) Condition Number:
The relative condition number considers relative perturbations in input and
output, so that

κpfq “ κrelpfq “ max
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Posedness and Conditioning

§ What is the condition number of an ill-posed problem?

§ If the condition number is bounded and the solution is unique, the problem is
well-posed

§ An ill-posed problem f either has no unique solution or has a (relative)
condition number of κpfq “ 8

§ This condition implies that the solutions to problem f are continuous and
di�erentiable in the given space of possible inputs to f

§ Sometimes well-posedness is defined to only require continuity
§ Generally, κpfq can be thought of as the reciprocal of the distance (in an

appropriate geometric embedding of problem configurations) from f to the
nearest ill-posed problem



Matrix Condition Number

§ The matrix condition number κpAq is the ratio between the max and min
distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

§ The max distance to center is given by the vector maximizing max||x||“1 ||Ax||2.
§ The min distance to center is given by the vector minimizing

min||x||“1 ||Ax||2 “ 1{pmax||x||“1 ||A
´1x||2q.

§ Thus, we have that κpAq “ ||A||2||A´1||2

§ The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product: Consider y ` δy “ Apx` δxq, assume ||x||2 “ 1

§ In the worst case, ||y||2 is minimized, that is ||y||2 “ 1{||A´1||2

§ In the worst case, ||δy||2 is maximized, that is ||δy||2 “ ||A||2||δy||2
§ So ||δy||2{||y||2 is at most κpAq||δx||2{||x||2



Singular Value Decomposition
§ The singular value decomposition (SVD)

We can express any matrix A as

A “ UΣV T

where U and V are orthogonal, and Σ is square nonnegative and diagonal,

Σ “

»

—

–

σmax
. . .

σmin

fi

ffi

fl

Any matrix is diagonal when expressed as an operator mapping vectors from
a coordinate system given by V to a coordinate system given by UT .

§ Condition number in terms of singular values

§ We have that }A}2 “ σmax and if A´1 exists, }A´1}2 “ 1{σmin

§ Consequently, κpAq “ σmax{σmin



Visualization of Matrix Conditioning



Linear Least Squares
§ Find x‹ “ argminxPRn ||Ax´ b||2 where A P Rmˆn:

Since m ě n, the minimizer generally does not attain a zero residual Ax´ b.
We can rewrite the optimization problem constraint via

x‹ “ argmin
xPRn

||Ax´ b||22 “ argmin
xPRn

”

pAx´ bqT pAx´ bq
ı

§ Given the SVD A “ UΣV T we have x‹ “ V Σ:UT
looomooon

A:

b, where Σ: contains the

reciprocal of all nonzeros in Σ, and more generally : denotes pseudoinverse:
§ The minimizer satisfies UΣV Tx‹ – b and consequently also satisfies

Σy‹ – d where y‹ “ V Tx‹ and d “ UT b.

§ The minimizer of the reduced problem is y‹ “ Σ:d, so yi “ di{σi for
i P t1, . . . , nu and yi “ 0 for i P tn` 1, . . . ,mu.



Normal Equations
§ Normal equations are given by solving ATAx “ ATb:

If ATAx “ ATb then

pUΣV T qTUΣV Tx “ pUΣV T qTb

ΣTΣV Tx “ ΣTUTb

V Tx “ pΣTΣq´1ΣTUTb “ Σ:UTb

x “ V Σ:UTb “ x‹

§ However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm
Generally we have κpATAq “ κpAq2 (the singular values of ATA are the
squares of those in A). Consequently, solving the least squares problem via
the normal equations may be unstable because it involves solving a problem
that has worse conditioning than the initial least squares problem.

Demo: Normal equations vs Pseudoinverse
Demo: Issues with the normal equations

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html


Solving the Normal Equations

§ If A is full-rank, then ATA is symmetric positive definite (SPD):
§ Symmetry is easy to check pATAqT “ ATA.
§ A being full-rank implies σmin ą 0 and further if A “ UΣV T we have

ATA “ V TΣ2V

which implies that rows of V are the eigenvectors of ATA with eigenvalues Σ2

since ATAV T “ V TΣ2.

§ Since ATA is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

ATA “ LLT



QR Factorization
§ If A is full-rank there exists an orthogonal matrix Q and a unique

upper-triangular matrix R with a positive diagonal such that A “ QR
§ Given ATA “ LLT , we can take R “ LT and obtain Q “ AL´T , since
L´1AT
looomooon

QT

AL´T
loomoon

Q

“ I implies that Q has orthonormal columns.

§ A reduced QR factorization (unique part of general QR) is defined so that
Q P Rmˆn has orthonormal columns and R is square and upper-triangular
A full QR factorization gives Q P Rmˆm and R P Rmˆn, but since R is upper
triangular, the latter m´ n columns of Q are only constrained so as to keep
Q orthogonal. The reduced QR factorization is given by taking the first n
columns Q and Q̂ the upper-triangular block of R, R̂ giving A “ Q̂R̂.

§ We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

ATAx “ ATb ñ R̂T Q̂T Q̂
loomoon

I

R̂x “ R̂T Q̂Tb ñ R̂x “ Q̂Tb



Computing the QR Factorization
§ The Cholesky-QR algorithm uses the normal equations to obtain the QR

factorization
§ Compute ATA “ LLT , take R “ LT , and solve for Q triangular linear systems
LQT “ AT

§ If A is mˆ n, forming ATA has cost mn2, computing Cholesky factorization
has cost p2{3qn3, and solving the triangular systems (if Q is needed) costs mn2,
yielding total cost 2mn2 ` p2{3qn3

§ However, this method is unstable since ATA is ill-conditioned. This is
addressible by iterating on the computed (nearly-orthogonal) Q factor
(CholeskyQR2).

§ Orthogonalization-based methods are most e�cient and stable for QR
factorization of dense matrices

§ Apply a sequene of orthogonal transformations Q1, . . . ,Qk to reduce A to
triangulr form pQ1 ¨ ¨ ¨Qkq

TA “ R
§ Householder QR uses rank-1 perturbations of the identity matrix (reflectors)
Qi “ I ´ 2uiu

T
i to zero-out each sub-column of A

§ Givens rotations zero-out a single entry at a time
§ Both approaches have cost Opmn2q with similar constant to Cholesky-QR



Eigenvalue Decomposition
§ If a matrix A is diagonalizable, it has an eigenvalue decomposition

A “XDX´1

where X are the right eigenvectors, X´1 are the left eigenvectors and D are
eigenvalues

AX “
“

Ax1 ¨ ¨ ¨Axn
‰

“XD “
“

d11x1 ¨ ¨ ¨ dnnxn
‰

.

§ If A is symmetric, its right and left singular vectors are the same, and
consequently are its eigenvectors.

§ More generally, any normal matrix, AHA “ AAH , has unitary eigenvectors.
§ A and B are similar, if there exist Z such that A “ ZBZ´1

§ Normal matrices are unitarily similar (Z´1 “ ZH) to diagonal matrices
§ Symmetric real matrices are orthogonally similar (Z´1 “ ZT ) to real diagonal

matrices
§ Hermitian matrices are unitarily similar to real diagonal matrices



Similarity of Matrices

matrix similarity reduced form
SPD orthogonal real positive diagonal

real symmetric orthogonal real tridiagonal
real diagonal

Hermitian unitary real diagonal
normal unitary diagonal

real orthogonal real Hessenberg
diagonalizable invertible diagonal

arbitrary unitary triangular
invertible bidiagonal



Rayleigh Quotient

§ For any vector x that is close to an eigenvector, the Rayleigh quotient
provides an estimate of the associated eigenvalue of A:

ρApxq “
xHAx

xHx
.

§ If x is an eigenvector of A, then ρApxq is the associated eigenvalue.
§ Moreover, for y “ Ax, the Rayleigh quotient is the best possible eigenvalue

estimate given x and y, as it is the solution α to xα – y.

§ The normal equations for this scalar-output least squares problem are (assuming
A is real),

xTxα “ xTy ñ α “
xTy

xTx
“

xTAx

xTx
.



Introduction to Krylov Subspace Methods
§ Krylov subspace methods work with information contained in the nˆ k matrix

Kk “
“

x0 Ax0 ¨ ¨ ¨ Ak´1x0

‰

We seek to best use the information from the matrix vector product results
(columns of Kk) to solve eigenvalue problems.

§ A is similar to companion matrix C “K´1
n AKn:

Letting kpiqn “ Ai´1x, we observe that

AKn “

”

Ak
p1q
n ¨ ¨ ¨ Ak

pn´1q
n Ak

pnq
n

ı

“

”

k
p2q
n ¨ ¨ ¨ k

pnq
n Ak

pnq
n

ı

,

therefore premultiplying by K´1
m transforms the first n´ 1 columns of AKn

into the last n´ 1 columns of I,

K´1
n AKn “

”

K´1
n k

p2q
n ¨ ¨ ¨ K´1

n k
pnq
n K´1

n Ak
pnq
n

ı

“

”

e2 ¨ ¨ ¨ en K´1
n Ak

pnq
n

ı



Krylov Subspaces

§ Given QkRk “Kk, we obtain an orthonormal basis for the Krylov subspace,

KkpA,x0q “ spanpQkq “ tppAqx0 : degppq ă ku,

where p is any polynomial of degree less than k.
§ The Krylov subspace includes the k ´ 1 approximate dominant eigenvectors

generated by k ´ 1 steps of power iteration:
§ The approximation obtained from k ´ 1 steps of power iteration starting from x0

is given by the Rayleigh-quotient of y “ Akx0.
§ This vector is within the Krylov subspace, y P KkpA,x0q.
§ Consequently, Krylov subspace methods will generally obtain strictly better

approximations of the dominant eigenpair than power iteration.



Krylov Subspace Methods

§ The k ˆ k matrix Hk “ Q
T
kAQk minimizes ||AQk ´QkHk||2:

The minimizer X for the linear least squares problem QkX – AQk is (via the
normal equations) X “ QT

kAQk “Hk.
§ Hk is upper-Hessenberg, because the companion matrix Cn is

upper-Hessenberg:
Note that Hk is the leading k-by-k minor of Hn and

Hn “ Q
T
nAQn “ RK

´1
n AKnR

´1 “ RCnR
´1

is a product of three matrices: upper-triangular R, upper-Hessenberg Cn ,
and upper-triangular R´1, which results in upper-Hessenberg Hn.



Rayleigh-Ritz Procedure
§ The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

Hk “XDX
´1

eigenvalue approximations based on Ritz vectors X are given by QkX.
§ The Ritz vectors and values are the ideal approximations of the actual

eigenvalues and eigenvectors based on only Hk and Qk:
Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz
value λmaxpHkq will be the maximum Rayleigh quotient of any vector in
Kk “ spanpQkq,

max
xPspanpQkq

xTAx

xTx
“ max

y‰0

yTQT
kAQky

yTy
“ max

y‰0

yTHky

yTy
“ λmaxpHkq,

which is the best approximation to λmaxpAq “ maxx‰0
xTAx
xTx

available in Kk.
The quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.



Low Rank Matrix Approximation
§ Given a matrix A P Rmˆn seek rank r ă m,n approximation

§ Given by matrices U P Rmˆr and V P Rnˆr so

A « UV T

§ Reduces memory footprint and cost of applying A from mn to mr ` nr
§ This factorization is nonunique, UV T “ pUMqpVM´T qT

§ Eckart-Young (optimal low-rank approximation by SVD) theorem
§ Truncated SVD approximates A as

A « Ã “
r
ÿ

i“1

σiuiv
T
i

where σ1, . . . , σr are the largest r singular values, while ui and vi are the
associated left and right singular vectors

§ Eckart-Young theorem demonstrates that the truncated SVD minimizes

}A´ Ã}2
loooomoooon

σr`1

and }A´ Ã}F
loooomoooon

řminpm,nq
i“r`1 σi



Rank Revealing Matrix Factorizations
§ Computing the SVD

§ Can compute full SVD with Opmnminpm,nqq cost via bidiagonalization
§ unconditionally stable and accurate
§ ine�cient for low r or if A is sparse

§ Given any low-rank approximation composed of U and V , compute QR of each
and SVD of product of R factors to obtain SVD with total cost Oppm` nqr2q

§ QR with column pivoting
§ By selecting columns of largest norm in the trailing matrix during QR

factorization, we obtain a pivoted factorization with permutation matirx P

AP “ QR

§ Truncating this factorization can be done after applying r Householder
reflectors (or another QR algorithm on r columns), with cost Oppm` nqrq

§ Approximation is somewhat suboptimal in theory, but in practice almost always
as accurate as truncated SVD



Orthogonal Iteration

§ For sparse matrices, QR factorization creates fill, so must revert to iterative
methods

§ Can find SVD of A by implicit products with ATA or AAT , since left singular
vectors of A are eigenvectors of ATA

§ Krylov subspace methods are e�ective for computing the largest eigenvector
§ Deflation, e.g., AÑ pA´ σ1u1v

T
1 q can be used to compute other eigenvectors

§ Orthogonal iteration interleaves deflation and power iteration
§ Given starting eigenvector guess U p0q P Rnˆr, compute V pi`1q “ AU piq and

obtain U pi`1q as the Q factor of the QR of V pi`1q

§ Converges to r largest eigenvectors, for SVD can compute V pi`1q “ AT pAU piqq
at each iteration

§ QR factorization serves to orthogonalize each column w.r.t. eigenvectors being
converged to by previous columns



Randomized SVD
§ Orthogonal iteration for SVD can also be viewed as a randomized algorithm

§ Suppose that we have an exact low-rank factorization A “ UΣV T with
Σ P Rrˆr

§ If U p0q is a random orthogonal matrix, so is V TU p0q

§ Consequently,AU p0q is a set of r random linear combinations of columns of UΣ
§ Further, U “ U p1qU p1qTU since

spanpU p1qq “ spanpV p1qq “ spanpUq,

the latter equality holds with probability 1
§ Consequently, we can compute SVD of U p1qTA (with cost Opnr2q) and recover
U by premultiplying the computed left singular vectors by U p1q

§ When A is not exactly low-rank, span of leading singular vectors can be
captured by oversampling (e.g., selecting each U piq to have r ` 10 columns)

§ Initial guess U p0q need not be orthogonal (Gaussian random performs well,
structured pseudo-random enables Opmn log nq complexity for one-shot
randomized SVD), but better accuracy is obtained with orthogonality



Generalized Nyström Algorithm

§ The generalized Nyström algorithm provides an e�cient way of computing a
sketched low-rank factorization

§ the rank k factorization of a matrix A is obtained via

Âk “ AS
T
1 pS2AS

T
1 q
:S2A

§ where S1 and S2 are sketch matrices
§ no need to apply A to a general matrix, can define S1 and S2 as sparse or

structured (e.g., diagonal matrix times Fourier transform)
§ Sketch matrices can be constructed to be Gaussian random, with awareness of
A (e.g., via leverage score sampling) or to be sparse (CountSketch)



Multidimensional Optimization
§ Minimize fpxq

§ In the context of constrained optimization, also have equality and or inequality
constraints, e.g., Ax “ b or x ą 0

§ Unconstrained local optimality holds if ∇fpx˚q “ 0 and Hf px
˚q is positive

semi-definite
§ Reduces to solving nonlinear equations via optimality condition
§ Unconstrained local optimality conditions are looser, need the gradient to be

zero or positive in all unconstrained directions at x˚
§ The condition ∇fpx˚q “ 0 implies poor conditioning, perturbations that change

the function value in the kth digit can change the sollution in the pk{2qth digit
§ Quadratic optimization fpxq “ 1

2x
TAx´ bTx

§ Quadratic optimization problems can provide local approximations to general
nonlinear optimization problems via Newton’s method (where A is the Hessian
and bT is the gradient)

§ Equivalent to solving linear system Ax “ b by optimality condition
§ Accordingly, conditioning relative to perturbation in b is κpAq



Basic Multidimensional Optimization Methods
§ Steepest descent: minimize f in the direction of the negative gradient:

xk`1 “ xk ´ αk∇fpxkq
such that fpxk`1q “ minαk

fpxk ´ αk∇fpxkqq, i.e. perform a line search
(solve 1D optimization problem) in the direction of the negative gradient.

§ Given quadratic optimization problem fpxq “ 1
2x

TAx` bTx where A is
symmetric positive definite, the error ek “ xk ´ x˚ satisfies

||ek`1||A “ e
T
k`1Aek`1 “

σmaxpAq ´ σminpAq

σmaxpAq ` σminpAq
||ek||A

§ When su�ciently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

§ Convergence rate depends on the conditioning of A, since

σmaxpAq ´ σminpAq

σmaxpAq ` σminpAq
“
κpAq ´ 1

κpAq ` 1
.



Gradient Methods with Extrapolation
§ We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk ´ xk´1):

xk`1 “ xk ´ αk∇fpxkq ` βkpxk ´ xk´1q

§ The heavy ball method, which uses constant αk “ α and βk “ β, achieves
better convergence than steepest descent:

||ek`1||A “

a

κpAq ´ 1
a

κpAq ` 1
||ek||A

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.



Conjugate Gradient Method
§ The conjugate gradient method is capable of making the optimal (for a

quadratic objective) choice of αk and βk at each iteration of an extrapolation
method:

pαk, βkq “ argmin
αk,βk

„

f
´

xk ´ αk∇fpxkq ` βkpxk ´ xk´1q

¯



§ For SPD quadratic programming problems, conjugate gradient is an optimal first
order method, converging in n iterations.

§ It implicitly computes Lanczos iteration, searching along A-orthogonal
directions at each step.

§ Parallel tangents implementation of the method proceeds as follows

1. Perform a step of steepest descent to generate x̂k from xk.
2. Generate xk`1 by minimizing over the line passing through xk´1 and x̂k.

The method is equivalent to CG for a quadratic objective function.



Krylov Optimization
§ Conjugate gradient (CG) finds the minimizer of fpxq “ 1

2x
TAx´ bTx (which

satisfies optimality condition Ax “ b) within the Krylov subspace of A:
§ It constructs Krylov subspace KkpA, bq “ spanpb,Ab, . . . ,Ar´1bq.
§ At the kth step conjugate gradient yields iterate

xk “ ||b||2QkT
´1
k e1,

where Qk is an orthogonal basis for Krylov subspace KkpA, bq and
Tk “ Q

T
kAQk.

§ This choice of xk minimizes fpxq since

min
xPKkpA,bq

fpxq “ min
yPRk

fpQkyq

“ min
yPRk

yTQT
kAQky ´ b

TQky

“ min
yPRk

yTTky ´ ||b||2e
T
1 y

is minimized by y “ ||b||2T´1
k e1.



CG and Krylov Optimization
The solution at the kth step, yk “ ||b||2T´1

k e1 is obtained by CG from yk`1 with a
single matrix-vector product with A and vector operations with Opnq cost

§ The Lanczos method constructs Tk`1 from Tk using a matrix-vector product
with A

§ The change, Tk`1 ´

„

Tk
Tk`1pk ` 1, k ` 1q



is of rank 2

§ Consequently, the Sherman-Morrison-Woodbury formula (or an updated
factorization), which is for general M ,

pM ´ uvT q´1 “M´1 `
M´1uvTM´1

1´ vTM´1u

may be used to apply T´1
k`1 with Opkq cost

§ CG does this implicitly at each step
§ Other Krylov iterative methods are available for solution to general (non-SPD)

linear systems, such as the generalized minimum residual method (GMRES)
and bi-conjugate gradient, which construct a basis for AAT and ATA



Preconditioning
§ Convergence of iterative methods for Ax “ b depends on κpAq, the goal of a

preconditioner M is to obtain x by solving

M´1Ax “M´1b

with κpM´1Aq ă κpAq
§ need not form M´1A but only compute matrix-vector products M´1pAxq
§ want M´1x to be easy to compute (easier than A´1x)
§ so generally one extracts some M « A that is easy to solve linear systems with
§ however, M « A may be insu�cient/unnecessary, primary goal is to improve

conditioning to accelerate iterative methods, i.e., want κpM´1Aq ! κpAq

§ Common preconditioners select parts of A or perform inexact factorization
§ (block-)Jacobi preconditioner takes M to be (block-)diagonal of A
§ incomplete LU (ILU) preconditioners compute M “ LU « A (+pivoting)
§ ILU variants constraint sparsity of L and U factors during factorization to be

the same or not much more than that of A
§ good problem-specific preconditioners are often available in practice and

theory, applying also to problems beyond linear systems (eigenvalue problems,
optimization, approximate graph algorithms)



Conjugate Gradient Convergence Analysis
§ In previous discussion, we assumed Kn is invertible, which may not be the

case if A has m ă n distinct eigenvalues, however, in exact arithmetic CG
converges in m´ 1 iterations1

§ To prove this, we can analyze the ‘minimizing‘ polynomials in the Krylov
subspace in terms of the (real and positive) eigenvalues of A

§ The approximate solution xk obtained by CG after k ´ 1 iterations is given by
minimizing z P KkpA, bq, which means z “ ρk´1pAqb “ ρk´1pAqAx for some
polynomial ρk´1 of degree k ´ 1

§ Now, we observe that minimizing the objective fpzq is equivalent to minimizing

}b´Az}2A´1 “ φpzq “ pb´AzqTA´1pb´Azq “ px´ zqTApx´ zq

§ Observe that

φpzq “ px´ zqTApx´ zq “ zTAz ´ 2zT b
looooooomooooooon

2fpzq

´ xT b
loomoon

constant

1This derivation follows Applied Numerical Linear Algebra by James Demmel, Section 6.6.4



Conjugate Gradient Convergence Analysis (II)
§ Using z “ ρk´1pAqAx, we can simplify φpzq “ px´ zqTApx´ zq as

φpzq “
´

pI ´ ρk´1pAqAqx
¯T
A
´

pI ´ ρk´1pAqAqx
¯

“ xTqkpAqAqkpAqx

where Qk Q qkpξq “ 1´ ρk´1pξq ¨ ξ can be any degree k polynomial with
qkp0q “ 1 (or in matrix form, qkpSq “ I ´ ρk´1pSqS with qkpOq “ I), so

φpxkq “ min
zPKkpA,bq

φpzq “ min
qkPQk

xTqkpAqAqkpAqx

§ We can bound the objective based on the eigenvalues of A “ QΛQT using
the identity ppAq “ QppΛqQT ,

φpzq “ xTQqkpΛqΛqkpΛqQ
Tx

ď max
λiPλpAq

pqkpλiq
2qxTQΛQTx
loooooomoooooon

φpx0q



Conjugate Gradient Convergence Analysis (III)
§ Using our bound on the square of the residual norm φpzq, we can see why CG

converges after m´ 1 iterations if there are only m ă n distinct eigenvalues

φpxkq “ min
qkPQk

φpzq ď min
qkPQk

max
λiPλpAq

pqkpλiq
2qφpx0q

consequently, the residual norm }rk}A´1 “
a

φpxkq decreases as
}rk}A´1

}r0}A´1

ď min
qkPQk

max
λiPλpAq

|qkpλiq|

§ To see that the residual goes to 0, we find a suitable polynomial in Qm (the
set of polynomials qm of degree m with qmp0q “ 1)

§ Specifically, we select qm to be zero at each distinct eigenvalue λ1, . . . , λm of A

qmpξq “

śm
j“1pλi ´ ξq
śm
j“1 λi

while also satisfiying qmp0q “ 1
§ This polynomial implies that }rm} “ φpxmq “ 0 since maxλiPλpAq qmpλiq

2 “ 0



Round-o� Error in Conjugate Gradient
§ CG provides strong convergence guarantees for SPD matrices in exact

arithmetic
§ Classically, CG was viewed as a direct method, since its guaranteed to

convergence in n iterations
§ In practice, round-o� error prevents CG from achieving this for realistic

matrices, so CG was actually abandoned for a while due to being viewed as
unstable

§ Later, it was realized that CG is highly competitive as an iterative method

§ Due to round-o� CG may stagnate / have plateaus in convergence
§ A formal analysis of round-o� error2 reveals that CG with round-o� is equivalent

to exact CG on a matrix of larger dimension, whose eigenvalues are clustered
around those of A

§ Using this view, CG convergence plateaus may be explained by the polynomial
qk developing more and more zeros near the same eigenvalue of A

2A. Greenbaum and Z. Strakos, SIMAX 1992



Graph and Matrix Duality
§ graphs have have a natural correspondence with sparse matrices

§ consider an unweighted undirected graph G “ pV,Eq with n vertices and m
edges

§ the adjacency matrix A of g has n rows/columns for each edge, and aij “ 1 if
pi, jq P E

§ A is symmetric because G is undirected, weighted and directed graphs can be
expressed similarly with A

§ matrix-based representations of graphs can be used to devise algorithms
§ combinatorial algorithms (e.g., breadth-first search or bellman-ford for shortest

paths) may be expressed by linear algebra operations on a di�erent semiring
§ for example, for shortest paths, the pmin,`q semiring is used in place of the

standard p`,ˆq
§ writing matrix operations on this semiring as pb,‘q, the distance matrix is

I ‘A‘ pAbAq ‘ ¨ ¨ ¨ ‘An

since dij “ minkPt1,...,numinu1,...,uk aiu1 ` au1u2 ` ¨ ¨ ¨ auk´1uk

§ approximations to graph problems may also be obtained via numerical
optimization



Graph Partitioning from Eigenvectors

§ The Laplacian matrix provides a model of interactions on a graph that is
useful in many contexts

§ the Laplacian matrix of an unweighted graph is D ´A where D is a diagonal
matrix containing vertex degrees and A is the adjacency matrix

§ common 2D/3D grid discretization of numerical partial di�erential equations
yield a Laplacian matrix

§ The second-smallest-eigenvalue eigenvector of the Laplacian (the Fiedler
vector), gives a good partitioning of the graph

§ One of the eigenvectors of the Laplacian has eigenvalue 0 and is simply the 1s
vector

§ If the graph is disconnected, the null-space has dimension at least 2



Newton’s Method
§ Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f :

fpxk ` sq « f̂psq “ fpxkq ` s
T∇fpxkq `

1

2
sTHf pxkqs.

The minima of this function can be determined by identifying critical points

0 “ ∇f̂psq “ ∇fpxkq `Hf pxkqs,

thus to determine s we solve the linear system,

Hf pxkqs “ ´∇fpxkq.

Assuming invertibility of the Hessian, we can write the Newton’s method
iteration as

xk`1 “ xk ´Hf pxkq
´1∇fpxkq

loooooooooomoooooooooon

s

.

Quadratic convergence follows by equivalence to Newton’s method for solving
nonlinear system of optimality equations ∇fpxq “ 0.



Nonlinear Least Squares
§ An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fxptq so that fxptiq « yi:
For example, consider fitting frx1,x2sptq “ x1 sinpx2tq so that

»

–

frx1,x2sp1.5q

frx1,x2sp1.9q

frx1,x2sp3.2q

fi

fl «

»

–

´1.2
4.5
7.3

fi

fl .

§ We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:
Define residual vector function rpxq so that ripxq “ yi ´ fxptiq and minimize

φpxq “
1

2
||rpxq||22 “

1

2
rpxqTrpxq.

Now the gradient is ∇φpxq “ JTr pxqrpxq and the Hessian is

Hφpxq “ J
T
r pxqJrpxq `

m
ÿ

i“1

ripxqHripxq.



Gauss-Newton Method
§ The Hessian for nonlinear least squares problems has the form:

Hφpxq “ J
T
r pxqJrpxq `

m
ÿ

i“1

ripxqHripxq.

The second term is small when the residual function rpxq is small, so
approximate

Hφpxq « Ĥφpxq “ J
T
r pxqJrpxq.

§ The Gauss-Newton method is Newton iteration with an approximate Hessian:

xk`1 “ xk ´ Ĥφpxkq
´1∇fpxkq “ xk ´ pJTr pxkqJrpxkqq´1JTr pxkqrpxkq.

Recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems Jrpxkqsk – rpxkq,xk`1 “ xk ´ sk.



Constrained Optimization Problems

§ We now return to the general case of constrained optimization problems:

min
x
fpxq subject to gpxq “ 0 and hpxq ď 0

When f is quadratic, while h, g is linear, this is a quadratic optimization
problem.

§ Generally, we will seek to reduce constrained optimization problems to a
series of simpler optimization problems:

§ sequential quadratic programming: solve a series of constrained quadratic
optimization problems

§ interior point methods: solve a series of more complicated (more
ill-conditioned) unconstrained optimization problems



Lagrangian Duality
§ The Lagrangian function with constraints gpxq “ 0 and hpxq ď 0 is

Lpx,λq “ fpxq ` λT
„

hpxq
gpxq



The constrained minima of fpxq must be saddle points of the Lagrangian
function

§ The Lagrangian dual problem is an unconstrained optimization problem:

max
λ

qpλq, qpλq “

#

minx Lpx,λq if λ ě 0

´8 otherwise

The unconstrained optimality condition ∇qpλ˚q “ 0, implies

max

ˆ

λ˚,

„

hpxq
gpxq

˙

“ 0

when λ˚i “ 0, we say the ith constraint is inactive at the minimum point.



Optimality and Complementarity Slackness Condition
Consider the inequality-constrained optimization problem, hpxq ď 0,

Lpx,λq “ fpxq ` λThpxq

§ The pair x˚ and λ˚ are a primal-dual optimal solution x˚ is feasible, λ˚ ě 0,
and strong duality holds, fpx˚q “ qpλ˚q “ Lpx˚,λ˚q

§ The complementarity slackness condition max pλ˚,hpxqq “ 0 follows since

fpx˚q “ Lpx˚,λ˚q “ fpx˚q ` λ˚Thpx˚q

so, since x˚ is feasible, we have hpx˚q ě 0 and consequently λ˚i hipx˚q “ 0

§ Complementarity slackness must be satisfied along with other KKT conditions by
any optimal primal-dual solution if f is di�erentiable and strong duality holds

§ If f is convex, then strong duality holds and further the KKT conditions are not
only necessary but su�cient



Sequential Quadratic Programming
§ Sequential quadratic programming (SQP) reduces a nonlinear equality

constrained problem to a sequence of constrained quadratic programs via a
Taylor expansion of the Lagrangian function Lf px,λq “ fpxq ` λTgpxq:

qpxk ` s,λk ` δq “Lf pxk,λkq ` sT p∇fpxkq ` JTg pxkqλkq `
1

2
sTBpxk,λkqs

` δT pJgpxkqs` gpxkqq

where Bpx,λq “Hf pxq `
řm
i“1 λiHgipxq

§ SQP ignores the constant term Lf pxk,λkq and minimizes s while treating δ
as a Lagrange multiplier:
The above unconstrained quadratic program corresponds to the Lagrangian
form of the constrained quadratic program

max
s
sT p∇fpxkq ` JTg pxkqλkq `

1

2
sTBpxk,λkqs

with constraint Jgpxkqs “ ´gpxkq.



Interior Point Methods
§ Barrier functions provide an e�ective way of working with inequality

constraints hpxq ď 0:
Inverse barrier function:

φµpxq “ fpxq ´ µ
m
ÿ

i“1

1

hipxq

Logarithmic barrier function:

φµpxq “ fpxq ´ µ
m
ÿ

i“1

logp´hipxqq

in theory with su�ciently small steps we have x˚µ Ñ x˚ as µÑ 0

§ Interior point methods additionally incorporate Lagrangian optimization
§ can be combined with SQP or alternating minimization
§ slack variables with nonnegativity constraints reduce general inequality

constraints to nonnegativity and equality constraints
§ optimality conditions for augmented Lagrangian conditions yield linear system
§ conditioning of interior point linear systems su�ers as µ decreases



Karush-Kuhn-Tucker (KKT) conditions
Consider the linear-constrained Quadratic program (QP):

min
xPRn

1

2
xTHx` xT c

s.t. Ax “ b, Cx ě d

Its Lagrangian function may be used to derive an interior point method

Lpx, λ, νq “
1

2
xTHx` xT c´ λT pAx´ bq ´ νT pCx´ dq

The first-order optimality (KKT) conditions are

∇xLpx, λ, νq “ 0

Ax´ b “ 0

Cx´ d ě 0

νT pCx´ dq “ 0

ν ě 0



Primal-dual Interior Point Method (IPM)
Solve perturbed KKT conditions after introducing slack variables s P Rm2

Hx` c´ATλ´ CT ν “ 0

Ax´ b “ 0

Cx´ d´ s “ 0

SV e “ σµe

s, νą 0

where

V “ diagpν1, . . . , νm2q, S “ diagps1, . . . , sm2q, e “ r1, . . . 1s
T P Rm2

µ “
sT ν

m2
, σ P r0, 1s



Interior Point Method (IPM): KKT system

Newton’s method applied to KKT equations results in linear systems

»

–

´H AT CT

A 0 0

C 0 Dpkq

fi

fl

¨

˝

∆xpkq

∆λpkq

∆νpkq

˛

‚“ ´

¨

˚

˝

r
pkq
g

r
pkq
e

r
pkq
a

˛

‹

‚

where Dpkq “
`

V pkq
˘´1

Spkq is diagonal and changing with iteration k.
These linear systems become ill-conditioned as the interior point method
approaches converges

§ the values of Dpkq “
`

V pkq
˘´1

Spkq vary greatly in magnitude
§ the values of Spkq go to zero if inequality constraint is active at the local

minima
§ at the same time, νpkqi s

pkq
i multiply to a fixed value that scales with σ
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