CS 598 EVS: Tensor Computations Matrix Computations Background

Edgar Solomonik

University of Illinois at Urbana-Champaign

Conditioning

§ **Absolute Condition Number**:

The absolute condition number is a property of the problem, which measures its sensitivity to perturbations in input ˇ

 $\kappa_{\textit{abs}}(f) = \lim_{\textit{size of input perturbation} \to 0} \max_{\textit{inputs}} \max_{\textit{perturbations in input}}$ \overline{a} **Perturbation in output** $\frac{1}{2}$ *perturbation in output*

ˇ

For problem f at input x it is simply the derivative of f at x ,

$$
\kappa_{\text{abs}}(f) = \lim_{\Delta x \to 0} \left| \frac{f(x + \Delta x) - f(x)}{\Delta x} \right| = \left| \frac{df}{dx}(x) \right|
$$

When considering a space of inputs $\mathcal X$ *it is* $\kappa_{\textbf{\textit{abs}}} = \max_{x \in \mathcal X}$ $\left| \frac{df}{dx}(x) \right|$ $\begin{matrix} \end{matrix}$

§ **(Relative) Condition Number**:

The relative condition number considers relative perturbations in input and output, so that ˇ ˇ

$$
\kappa(f) = \kappa_{\text{rel}}(f) = \max_{x \in \mathcal{X}} \lim_{\Delta x \to 0} \left| \frac{(f(x + \Delta x) - f(x))/f(x)}{\Delta x/x} \right| = \frac{\kappa_{\text{abs}}(f)|x|}{|f(x)|}
$$

Posedness and Conditioning

- § **What is the condition number of an ill-posed problem?**
	- § *If the condition number is bounded and the solution is unique, the problem is well-posed*
	- § *An ill-posed problem* f *either has no unique solution or has a (relative) condition number of* $\kappa(f) = \infty$
	- § *This condition implies that the solutions to problem* f *are continuous and* differentiable in the given space of possible inputs to f
	- § *Sometimes well-posedness is defined to only require continuity*
	- \triangleright *Generally,* $\kappa(f)$ *can be thought of as the reciprocal of the distance (in an appropriate geometric embedding of problem configurations) from* f *to the nearest ill-posed problem*

Matrix Condition Number

- Extem matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball (norm-1 vectors) transformed by A :
	- ▶ The max distance to center is given by the vector maximizing $\max_{||\boldsymbol{x}||=1} ||\boldsymbol{A}\boldsymbol{x}||_2$.
	- § *The min distance to center is given by the vector minimizing* $\min_{\|x\| \leq 1} \|Ax\|_2 = 1/(\max_{\|x\| \leq 1} \|A^{-1}x\|_2).$
	- \blacktriangleright Thus, we have that $\kappa(\bm{A}) = ||\bm{A}||_2 ||\bm{A}^{-1}||_2$
- § The matrix condition number bounds the worst-case amplification of error in a matrix-vector product: *Consider* $y + \delta y = A(x + \delta x)$, assume $||x||_2 = 1$
	- \blacktriangleright In the worst case, $||\bm{y}||_2$ is minimized, that is $||\bm{y}||_2 = 1/||\bm{A}^{-1}||_2$
	- **•** In the worst case, $||\delta y||_2$ is maximized, that is $||\delta y||_2 = ||A||_2||\delta y||_2$
	- \blacktriangleright So $||\delta y||_2/||y||_2$ is at most $\kappa(A)||\delta x||_2/||x||_2$

Singular Value Decomposition

 \blacktriangleright The singular value decomposition (SVD)

We can express any matrix A *as*

 $\bm A = \bm U \bm \Sigma \bm V^T$

where U *and* V *are orthogonal, and* Σ *is square nonnegative and diagonal,*

 $\Sigma =$ \overline{a} \parallel σ*max . . .* σ*min* \overline{a} $\left| \right|$

Any matrix is diagonal when expressed as an operator mapping vectors from \bm{a} coordinate system given by \bm{V} to a coordinate system given by \bm{U}^T .

- § Condition number in terms of singular values
	- \blacktriangleright We have that $\|\bm{A}\|_2 = \sigma_{\textit{max}}$ and if \bm{A}^{-1} exists, $\|\bm{A}^{-1}\|_2 = 1/\sigma_{\textit{min}}$
	- **Consequently,** $\kappa(A) = \sigma_{max}/\sigma_{min}$

Visualization of Matrix Conditioning

Linear Least Squares

 \blacktriangleright Find $x^\star = \operatorname{argmin}_{\bm{x} \in \mathbb{R}^n} ||\bm{A}\bm{x} - \bm{b}||_2$ where $\bm{A} \in \mathbb{R}^{m \times n}$:

Since $m \geq n$, the minimizer generally does not attain a zero residual $Ax - b$. *We can rewrite the optimization problem constraint via*

$$
\boldsymbol{x}^{\star} = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^n} ||\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}||_2^2 = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^n} \left[(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b})^T (\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}) \right]
$$

▶ Given the SVD $\bm A = \bm U \bm \Sigma \bm V^T$ we have $\bm x^\star = \bm{\mathcal{Y}} \bm \Sigma^\dagger \bm U^T \bm b,$ where $\bm \Sigma^\dagger$ contains the A^{\dagger}

reciprocal of all nonzeros in Σ , and more generally \dagger denotes pseudoinverse:

 \blacktriangleright The minimizer satisfies $U \Sigma V^T x^\star \cong b$ and consequently also satisfies

$$
\Sigma y^\star \cong d \quad \text{where } y^\star = V^T x^\star \text{ and } d = U^T b.
$$

 \blacktriangleright The minimizer of the reduced problem is $\bm{y}^\star = \bm{\Sigma}^\dagger \bm{d}$, so $y_i = d_i / \sigma_i$ for $i \in \{1, \ldots, n\}$ and $y_i = 0$ for $i \in \{n + 1, \ldots, m\}$.

Normal Equations

Demo: [Normal equations vs Pseudoinverse](https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html) Demo: [Issues with the normal equations](https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html)

▶ Normal equations are given by solving
$$
A^T A x = A^T b
$$
:

If $A^T A x = A^T b$ *then*

$$
(U\Sigma V^T)^T U \Sigma V^T x = (U\Sigma V^T)^T b
$$

$$
\Sigma^T \Sigma V^T x = \Sigma^T U^T b
$$

$$
V^T x = (\Sigma^T \Sigma)^{-1} \Sigma^T U^T b = \Sigma^{\dagger} U^T b
$$

$$
x = V \Sigma^{\dagger} U^T b = x^*
$$

 \blacktriangleright However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

 \bm{G} enerally we have $\kappa(\bm{A}^T\bm{A})=\kappa(\bm{A})^2$ (the singular values of $\bm{A}^T\bm{A}$ are the *squares of those in* A*). Consequently, solving the least squares problem via the normal equations may be unstable because it involves solving a problem that has worse conditioning than the initial least squares problem.*

Solving the Normal Equations

- ▶ If A is full-rank, then $A^T A$ is symmetric positive definite (SPD):
	- \blacktriangleright Symmetry is easy to check $(\boldsymbol{A}^T\boldsymbol{A})^T = \boldsymbol{A}^T\boldsymbol{A}$.
	- \blacktriangleright \bm{A} being full-rank implies $\sigma_{\sf min}>0$ and further if $\bm{A} = \bm{U} \bm{\Sigma} \bm{V}^T$ we have

$$
\boldsymbol{A}^T\boldsymbol{A}=\boldsymbol{V}^T\boldsymbol{\Sigma}^2\boldsymbol{V}
$$

which implies that rows of V *are the eigenvectors of* A^TA *with eigenvalues* $\Sigma²$ *since* $A^T A V^T = V^T \Sigma^2$.

▶ Since $A^T A$ is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

$$
\bm A^T\bm A = \bm L\bm L^T
$$

QR Factorization

If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that $A = QR$

• Given
$$
A^T A = LL^T
$$
, we can take $R = L^T$ and obtain $Q = AL^{-T}$, since $\underbrace{L^{-1}A^T}_{Q^T} \underbrace{AL^{-T}}_{Q} = I$ implies that Q has orthonormal columns.

- \triangleright A reduced OR factorization (unique part of general OR) is defined so that $\boldsymbol{Q} \in \mathbb{R}^{m \times n}$ has orthonormal columns and \boldsymbol{R} is square and upper-triangular A full QR factorization gives $\bm{Q} \in \mathbb{R}^{m \times m}$ and $\bm{R} \in \mathbb{R}^{m \times n}$, but since \bm{R} is upper *triangular, the latter* $m - n$ *columns of* Q *are only constrained so as to keep* Q *orthogonal. The reduced QR factorization is given by taking the first* n *columns* Q and \hat{Q} the upper-triangular block of R , \hat{R} giving $A = \hat{Q}\hat{R}$.
- \triangleright We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

$$
A^T A x = A^T b \quad \Rightarrow \quad \hat{R}^T \underbrace{\hat{Q}^T \hat{Q}}_{I} \hat{R} x = \hat{R}^T \hat{Q}^T b \quad \Rightarrow \quad \hat{R} x = \hat{Q}^T b
$$

Computing the QR Factorization

- \triangleright The Cholesky-OR algorithm uses the normal equations to obtain the OR factorization
	- \blacktriangleright Compute $\bm{A}^T\bm{A} = \bm{L}\bm{L}^T$, take $\bm{R} = \bm{L}^T$, and solve for \bm{Q} triangular linear systems $LO^T = A^T$
	- \blacktriangleright If A is $m \times n$, forming $\bm A^T \bm A$ has cost mn^2 , computing Cholesky factorization has cost $(2/3)n^3$, and solving the triangular systems (if \boldsymbol{Q} is needed) costs mn^2 , yielding total cost $2mn^2 + (2/3)n^3$
	- \blacktriangleright *However, this method is unstable since* $A^T A$ *is ill-conditioned. This is addressible by iterating on the computed (nearly-orthogonal)* Q *factor (CholeskyQR2).*
- \triangleright Orthogonalization-based methods are most efficient and stable for QR factorization of dense matrices
	- \blacktriangleright Apply a sequene of orthogonal transformations Q_1, \ldots, Q_k to reduce A to $\textit{triangular form} \ (\boldsymbol{Q}_1 \cdots \boldsymbol{Q}_k)^T \boldsymbol{A} = \boldsymbol{R}$
	- § *Householder QR uses rank-1 perturbations of the identity matrix (reflectors)* $\boldsymbol{Q}_i = \boldsymbol{I} - 2 \boldsymbol{u}_i \boldsymbol{u}_i^T$ to zero-out each sub-column of \boldsymbol{A}
	- § *Givens rotations zero-out a single entry at a time*
	- \blacktriangleright Both approaches have cost $O(mn^2)$ with similar constant to Cholesky-QR

Eigenvalue Decomposition

§ If a matrix A is diagonalizable, it has an *eigenvalue decomposition*

 $A = X D X^{-1}$

where X are the right eigenvectors, X^{-1} are the left eigenvectors and D are *eigenvalues*

$$
A\boldsymbol{X}=\begin{bmatrix} A\boldsymbol{x}_1 & \cdots A\boldsymbol{x}_n \end{bmatrix}=\boldsymbol{X}\boldsymbol{D}=\begin{bmatrix} d_{11}\boldsymbol{x}_1 & \cdots & d_{nn}\boldsymbol{x}_n \end{bmatrix}.
$$

- § *If* A *is symmetric, its right and left singular vectors are the same, and consequently are its eigenvectors.*
- \blacktriangleright *More generally, any normal matrix,* $A^H A = AA^H$, has unitary eigenvectors.
- \blacktriangleright A and B are *similar*, if there exist Z such that $A = ZBZ^{-1}$
	- \blacktriangleright *Normal matrices are unitarily similar* $(Z^{-1} = Z^H)$ to diagonal matrices
	- \blacktriangleright Symmetric real matrices are orthogonally similar ($\boldsymbol{Z}^{-1} = \boldsymbol{Z}^T$) to real diagonal *matrices*
	- § *Hermitian matrices are unitarily similar to real diagonal matrices*

Similarity of Matrices

Rayleigh Quotient

 \triangleright For any vector x that is close to an eigenvector, the *Rayleigh quotient* provides an estimate of the associated eigenvalue of A :

$$
\rho_{\bm{A}}(\bm{x}) = \frac{\bm{x}^H \bm{A} \bm{x}}{\bm{x}^H \bm{x}}.
$$

- \blacktriangleright *If* x is an eigenvector of A, then $\rho_A(x)$ is the associated eigenvalue.
- \blacktriangleright *Moreover, for* $y = Ax$, the Rayleigh quotient is the best possible eigenvalue *estimate given* x and y, as it is the solution α to $x\alpha \geq y$.
	- § *The normal equations for this scalar-output least squares problem are (assuming* A *is real),*

$$
\boldsymbol{x}^T\boldsymbol{x}\alpha = \boldsymbol{x}^T\boldsymbol{y} \quad \Rightarrow \quad \alpha = \frac{\boldsymbol{x}^T\boldsymbol{y}}{\boldsymbol{x}^T\boldsymbol{x}} = \frac{\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}}{\boldsymbol{x}^T\boldsymbol{x}}.
$$

Introduction to Krylov Subspace Methods

► *Krylov subspace methods* work with information contained in the $n \times k$ matrix

$$
\boldsymbol{K}_k = \begin{bmatrix} x_0 & Ax_0 & \cdots & A^{k-1}x_0 \end{bmatrix}
$$

We seek to best use the information from the matrix vector product results (columns of K_k) to solve eigenvalue problems.

 \blacktriangleright A is similar to *companion matrix* $\boldsymbol{C} = \boldsymbol{K}_n^{-1} \boldsymbol{A} \boldsymbol{K}_n$ *:* Letting $\boldsymbol{k}_n^{(i)} = A^{i-1} \boldsymbol{x}$, we observe that $\boldsymbol{A}\boldsymbol{K}_n = \begin{bmatrix} \boldsymbol{A}\boldsymbol{k}_n^{(1)}& \cdots & \boldsymbol{A}\boldsymbol{k}_n^{(n-1)}& \boldsymbol{A}\boldsymbol{k}_n^{(n)} \end{bmatrix}$ ı $=$.
.
. $\begin{array}{ccc} \boldsymbol{k}^{(2)}_n & \cdots & \boldsymbol{k}^{(n)}_n & \boldsymbol{A} \boldsymbol{k}^{(n)}_n \end{array}$ ı , therefore premultiplying by \boldsymbol{K}_{m}^{-1} transforms the first $n-1$ columns of \boldsymbol{AK}_{n} \int *into the last* $n - 1$ *columns of I,* ı

$$
\begin{aligned} \boldsymbol{K}^{-1}_{n}\boldsymbol{A}\boldsymbol{K}_{n} & = \begin{bmatrix} \boldsymbol{K}^{-1}_{n}\boldsymbol{k}^{(2)}_{n} & \cdots & \boldsymbol{K}^{-1}_{n}\boldsymbol{k}^{(n)}_{n} & \boldsymbol{K}^{-1}_{n}\boldsymbol{A}\boldsymbol{k}^{(n)}_{n} \end{bmatrix} \\ & = \begin{bmatrix} \boldsymbol{e}_{2} & \cdots & \boldsymbol{e}_{n} & \boldsymbol{K}^{-1}_{n}\boldsymbol{A}\boldsymbol{k}^{(n)}_{n} \end{bmatrix} \end{aligned}
$$

Krylov Subspaces

► Given $Q_kR_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

 $\mathcal{K}_k(A, x_0) = span(Q_k) = \{p(A)x_0 : deg(p) < k\},\$

where p is any polynomial of degree less than k .

- Extemble Krylov subspace includes the $k 1$ approximate dominant eigenvectors generated by $k - 1$ steps of power iteration:
	- \blacktriangleright The approximation obtained from $k 1$ steps of power iteration starting from x_0 *is given by the Rayleigh-quotient of* $y = A^kx₀$.
	- ▶ This vector is within the Krylov subspace, $y \in K_k(A, x_0)$.
	- § *Consequently, Krylov subspace methods will generally obtain strictly better approximations of the dominant eigenpair than power iteration.*

Krylov Subspace Methods

 \blacktriangleright The $k\times k$ matrix $\boldsymbol{H}_{k} = \boldsymbol{Q}_{k}^T \boldsymbol{A} \boldsymbol{Q}_{k}$ minimizes $||\boldsymbol{A} \boldsymbol{Q}_{k} - \boldsymbol{Q}_{k} \boldsymbol{H}_{k}||_2$: *The minimizer* X for the linear least squares problem $Q_k X \cong AQ_k$ is (via the *normal equations)* $\boldsymbol{X} = \boldsymbol{Q}_k^T \boldsymbol{A} \boldsymbol{Q}_k = \boldsymbol{H}_k$.

 \blacktriangleright H_k is upper-Hessenberg, because the companion matrix C_n is upper-Hessenberg:

Note that H_k *is the leading* k-by-k *minor of* H_n *and*

$$
\boldsymbol{H}_n = \boldsymbol{Q}_n^T \boldsymbol{A} \boldsymbol{Q}_n = \boldsymbol{R} \boldsymbol{K}_n^{-1} \boldsymbol{A} \boldsymbol{K}_n \boldsymbol{R}^{-1} = \boldsymbol{R} \boldsymbol{C}_n \boldsymbol{R}^{-1}
$$

is a product of three matrices: upper-triangular R , upper-Hessenberg C_n , and upper-triangular $\boldsymbol{R^{-1}}$, which results in upper-Hessenberg \boldsymbol{H}_n .

Rayleigh-Ritz Procedure

 \blacktriangleright The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

 $H_k = XDX^{-1}$

eigenvalue approximations based on Ritz vectors X are given by $Q_k X$.

§ The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k :

Assuming A *is a symmetric matrix with positive eigenvalues, the largest Ritz value* $\lambda_{max}(H_k)$ *will be the maximum Rayleigh quotient of any vector in* $\mathcal{K}_k = span(\mathbf{Q}_k)$,

$$
\max_{\boldsymbol{x}\in span(\boldsymbol{Q}_k)}\frac{\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}}{\boldsymbol{x}^T\boldsymbol{x}}=\max_{\boldsymbol{y}\neq 0}\frac{\boldsymbol{y}^T\boldsymbol{Q}_k^T\boldsymbol{A}\boldsymbol{Q}_k\boldsymbol{y}}{\boldsymbol{y}^T\boldsymbol{y}}=\max_{\boldsymbol{y}\neq 0}\frac{\boldsymbol{y}^T\boldsymbol{H}_k\boldsymbol{y}}{\boldsymbol{y}^T\boldsymbol{y}}=\lambda_{\textit{max}}(\boldsymbol{H}_k),
$$

which is the best approximation to $\lambda_{\textsf{max}}(\boldsymbol{A}) = \max_{\boldsymbol{x}\neq 0} \frac{\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}}{\boldsymbol{x}^T\boldsymbol{x}}$ $\frac{x^T A x}{x^T x}$ available in \mathcal{K}_k . *The quality of the approximation can also be shown to be optimal for other eigenvalues/eigenvectors.*

Low Rank Matrix Approximation

- ▶ Given a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ seek rank $r < m, n$ approximation
	- \blacktriangleright Given by matrices $\boldsymbol{U} \in \mathbb{R}^{m \times r}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times r}$ so

$$
\boldsymbol{A}\approx\boldsymbol{U}\boldsymbol{V}^T
$$

- \blacktriangleright Reduces memory footprint and cost of applying A from mn to $mr + nr$
- \blacktriangleright This factorization is nonunique, $\boldsymbol{U}\boldsymbol{V}^T = (\boldsymbol{U}\boldsymbol{M})(\boldsymbol{V}\boldsymbol{M}^{-T})^T$
- ▶ Eckart-Young (optimal low-rank approximation by SVD) theorem
	- § *Truncated SVD approximates* A *as*

$$
\boldsymbol{A} \approx \tilde{\boldsymbol{A}} = \sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T
$$

where $\sigma_1, \ldots, \sigma_r$ *are the largest* r *singular values, while* u_i *and* v_i *are the associated left and right singular vectors*

§ *Eckart-Young theorem demonstrates that the truncated SVD minimizes*

$$
\underbrace{\|\mathbf{A} - \tilde{\mathbf{A}}\|_2}_{\sigma_{r+1}} \quad \text{and} \quad \underbrace{\|\mathbf{A} - \tilde{\mathbf{A}}\|_F}_{\sum_{i=r+1}^{\min(m,n)} \sigma_i}
$$

Rank Revealing Matrix Factorizations

- ▶ Computing the SVD
	- \blacktriangleright *Can compute full SVD with* $O(mn \min(m, n))$ cost via bidiagonalization
		- § *unconditionally stable and accurate*
		- § *inecient for low* r *or if* A *is sparse*
	- § *Given any low-rank approximation composed of* U *and* V *, compute QR of each* and SVD of product of \boldsymbol{R} factors to obtain SVD with total cost $O((m+n) r^2)$
- \triangleright OR with column pivoting
	- § *By selecting columns of largest norm in the trailing matrix during QR factorization, we obtain a pivoted factorization with permutation matirx* P

$AP = OR$

- § *Truncating this factorization can be done after applying* r *Householder reflectors (or another OR algorithm on* r *columns), with cost* $O((m + n)r)$
- § *Approximation is somewhat suboptimal in theory, but in practice almost always as accurate as truncated SVD*

Orthogonal Iteration

- § For sparse matrices, QR factorization creates fill, so must revert to iterative methods
	- \blacktriangleright Can find SVD of A by implicit products with A^TA or AA^T , since left singular *vectors of* A *are eigenvectors of* A^T A
	- § *Krylov subspace methods are eective for computing the largest eigenvector*
	- \blacktriangleright Deflation, e.g., $A \rightarrow (A \sigma_1 u_1 v_1^T)$ can be used to compute other eigenvectors
- ▶ Orthogonal iteration interleaves deflation and power iteration
	- \blacktriangleright Given starting eigenvector guess $\boldsymbol{U}^{(0)}\in \mathbb{R}^{n\times r}$, compute $\boldsymbol{V}^{(i+1)}=\boldsymbol{A}\boldsymbol{U}^{(i)}$ and \bm{o} btain $\bm{U}^{(i+1)}$ as the \bm{Q} factor of the QR of $\bm{V}^{(i+1)}$
	- \blacktriangleright Converges to r largest eigenvectors, for SVD can compute $\bm{V}^{(i+1)} = \bm{A}^T(\bm{A}\bm{U}^{(i)})$ *at each iteration*
	- § *QR factorization serves to orthogonalize each column w.r.t. eigenvectors being converged to by previous columns*

Randomized SVD

- \triangleright Orthogonal iteration for SVD can also be viewed as a randomized algorithm
	- \blacktriangleright Suppose that we have an exact low-rank factorization $\bm A = \bm U \bm \Sigma \bm V^T$ with $\Sigma \in \mathbb{R}^{r \times r}$
	- $\;\blacktriangleright\;$ If $\bm{U}^{(0)}$ is a random orthogonal matrix, so is $\bm{V}^T\bm{U}^{(0)}$
	- \blacktriangleright Consequently, $AU^{(0)}$ is a set of r random linear combinations of columns of $U\Sigma$
	- \blacktriangleright *Further,* $U = U^{(1)}U^{(1)T}U$ *since*

$$
\textit{span}(\boldsymbol{U}^{(1)})=\textit{span}(\boldsymbol{V}^{(1)})=\textit{span}(\boldsymbol{U}),
$$

the latter equality holds with probability 1

- \blacktriangleright Consequently, we can compute SVD of $\bm{U}^{(1)T}\bm{A}$ (with cost $O(nr^2)$) and recover U by premultiplying the computed left singular vectors by $U^{(1)}$
- § *When* A *is not exactly low-rank, span of leading singular vectors can be* $\emph{captured by oversampling (e.g., selecting each $U^{(i)}$ to have $r+10$ columns)}$
- \blacktriangleright Initial guess $U^{(0)}$ need not be orthogonal (Gaussian random performs well, *structured pseudo-random enables* $O(mn \log n)$ *complexity for one-shot randomized SVD), but better accuracy is obtained with orthogonality*

Generalized Nyström Algorithm

- \blacktriangleright The generalized Nyström algorithm provides an efficient way of computing a sketched low-rank factorization
	- § *the rank* k *factorization of a matrix* A *is obtained via*

$$
\hat{\boldsymbol{A}}_k = \boldsymbol{A}\boldsymbol{S}_1^T(\boldsymbol{S}_2\boldsymbol{A}\boldsymbol{S}_1^T)^{\dagger}\boldsymbol{S}_2\boldsymbol{A}
$$

- where S_1 and S_2 are sketch matrices
- \blacktriangleright *no need to apply A to a general matrix, can define* S_1 *and* S_2 *as sparse or structured (e.g., diagonal matrix times Fourier transform)*
- § *Sketch matrices can be constructed to be Gaussian random, with awareness of* A *(e.g., via leverage score sampling) or to be sparse (CountSketch)*

Multidimensional Optimization

- \blacktriangleright Minimize $f(x)$
	- § *In the context of constrained optimization, also have equality and or inequality constraints, e.g.,* $Ax = b$ *or* $x > 0$
	- ▸ Unconstrained local optimality holds if $\nabla f(\bm{x}^{*}) = 0$ and $H_f(\bm{x}^{*})$ is positive *semi-definite*
	- § *Reduces to solving nonlinear equations via optimality condition*
	- § *Unconstrained local optimality conditions are looser, need the gradient to be* zero or positive in all unconstrained directions at x^\ast
	- \blacktriangleright The condition $\nabla f(\boldsymbol{x^*})=0$ implies poor conditioning, perturbations that change *the function value in the kth digit can change the sollution in the* $(k/2)$ *th digit*
- ▶ Quadratic optimization $f(x) = \frac{1}{2}x^TAx b^Tx$
	- § *Quadratic optimization problems can provide local approximations to general nonlinear optimization problems via Newton's method (where* A *is the Hessian* and \bm{b}^T is the gradient)
	- \blacktriangleright *Equivalent to solving linear system* $Ax = b$ *by optimality condition*
	- \blacktriangleright Accordingly, conditioning relative to perturbation in b is $\kappa(A)$

Basic Multidimensional Optimization Methods

▶ Steepest descent: minimize f in the direction of the negative gradient:

$$
\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k)
$$

 $\mathsf{such\ that}\ f(\boldsymbol{x}_{k+1}) = \min_{\alpha_k} f(\boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k)),$ i.e. perform a line search *(solve 1D optimization problem) in the direction of the negative gradient.*

▶ Given quadratic optimization problem $f(x) = \frac{1}{2}x^T A x + b^T x$ where A is symmetric positive definite, the error $\boldsymbol{e}_k = \boldsymbol{x}_k - \boldsymbol{x}^*$ satisfies

$$
||e_{k+1}||_{\boldsymbol{A}} = \boldsymbol{e}_{k+1}^T \boldsymbol{A} \boldsymbol{e}_{k+1} = \frac{\sigma_{\text{max}}(\boldsymbol{A}) - \sigma_{\text{min}}(\boldsymbol{A})}{\sigma_{\text{max}}(\boldsymbol{A}) + \sigma_{\text{min}}(\boldsymbol{A})} ||e_k||_{\boldsymbol{A}}
$$

- \blacktriangleright When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- \blacktriangleright Convergence rate depends on the conditioning of A , since

$$
\frac{\sigma_{\text{max}}(A) - \sigma_{\text{min}}(A)}{\sigma_{\text{max}}(A) + \sigma_{\text{min}}(A)} = \frac{\kappa(A) - 1}{\kappa(A) + 1}.
$$

Gradient Methods with Extrapolation

► We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

$$
\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k) + \beta_k (\boldsymbol{x}_k - \boldsymbol{x}_{k-1})
$$

Figure 1 The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

$$
||e_{k+1}||_A=\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}||e_k||_A
$$

Nesterov's gradient optimization method is another instance of an extrapolation method that provides further improved optimality guarantees.

Conjugate Gradient Method

§ The *conjugate gradient method* is capable of making the optimal (for a quadratic objective) choice of α_k and β_k at each iteration of an extrapolation method:

$$
(\alpha_k, \beta_k) = \underset{\alpha_k, \beta_k}{\text{argmin}} \left[f\left(\boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k) + \beta_k(\boldsymbol{x}_k - \boldsymbol{x}_{k-1})\right) \right]
$$

- § *For SPD quadratic programming problems, conjugate gradient is an optimal first order method, converging in* n *iterations.*
- § *It implicitly computes Lanczos iteration, searching along* A*-orthogonal directions at each step.*
- § *Parallel tangents* implementation of the method proceeds as follows
	- 1. Perform a step of steepest descent to generate \hat{x}_k from x_k .
	- 2. Generate x_{k+1} by minimizing over the line passing through x_{k-1} and \hat{x}_k . *The method is equivalent to CG for a quadratic objective function.*

Krylov Optimization

- ▶ Conjugate gradient (CG) finds the minimizer of $f(x) = \frac{1}{2}x^T A x b^T x$ (which satisfies optimality condition $Ax = b$) within the Krylov subspace of A:
	- ▶ It constructs Krylov subspace $\mathcal{K}_k(A, b) = \text{span}(b, Ab, \dots, A^{r-1}b)$ *.*
	- § *At the* k*th step conjugate gradient yields iterate*

$$
\bm{x}_k = ||\bm{b}||_2 \bm{Q}_k \bm{T}_k^{-1} \bm{e}_1,
$$

where Q_k *is an orthogonal basis for Krylov subspace* $\mathcal{K}_k(A, b)$ *and* $\boldsymbol{T_k} = \boldsymbol{Q}_k^T \boldsymbol{A} \boldsymbol{Q}_k.$

 \blacktriangleright This choice of x_k minimizes $f(x)$ since

$$
\min_{\boldsymbol{x} \in \mathcal{K}_k(\boldsymbol{A}, \boldsymbol{b})} f(\boldsymbol{x}) = \min_{\boldsymbol{y} \in \mathbb{R}^k} f(\boldsymbol{Q}_k \boldsymbol{y})
$$
\n
$$
= \min_{\boldsymbol{y} \in \mathbb{R}^k} \boldsymbol{y}^T \boldsymbol{Q}_k^T \boldsymbol{A} \boldsymbol{Q}_k \boldsymbol{y} - \boldsymbol{b}^T \boldsymbol{Q}_k \boldsymbol{y}
$$
\n
$$
= \min_{\boldsymbol{y} \in \mathbb{R}^k} \boldsymbol{y}^T \boldsymbol{T}_k \boldsymbol{y} - ||\boldsymbol{b}||_2 \boldsymbol{e}_1^T \boldsymbol{y}
$$

is minimized by $\boldsymbol{y} = ||\boldsymbol{b}||_2 T_k^{-1} \boldsymbol{e}_1.$

CG and Krylov Optimization

The solution at the k th step, $\pmb{y}_k = ||\pmb{b}||_2 \pmb{T}_k^{-1} \pmb{e}_1$ is obtained by CG from \pmb{y}_{k+1} with a single matrix-vector product with A and vector operations with $O(n)$ cost

- \triangleright *The Lanczos method constructs* T_{k+1} *from* T_k *using a matrix-vector product with* A .
.. \overline{a}
- \blacktriangleright The change, $T_{k+1} \left\vert T_{k} \right\vert$ $\left[T_{k+1}(k+1,k+1)\right]$ is of rank 2
- § *Consequently, the Sherman-Morrison-Woodbury formula (or an updated factorization), which is for general* M*,*

$$
(\bm{M}-\bm{u}\bm{v}^T)^{-1}=\bm{M}^{-1}+\frac{\bm{M}^{-1}\bm{u}\bm{v}^T\bm{M}^{-1}}{1-\bm{v}^T\bm{M}^{-1}\bm{u}}
$$

may be used to apply T_{k+1}^{-1} with $O(k)$ cost

- § *CG does this implicitly at each step*
- § *Other Krylov iterative methods are available for solution to general (non-SPD) linear systems, such as the generalized minimum residual method (GMRES) and bi-conjugate gradient, which construct a basis for* AA^T *and* A^T A

Preconditioning

► Convergence of iterative methods for $Ax = b$ depends on $\kappa(A)$, the goal of a preconditioner M is to obtain x by solving

$$
\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{M}^{-1}\boldsymbol{b}
$$

with $\kappa(\mathbf{M}^{-1}\mathbf{A}) < \kappa(\mathbf{A})$

- \blacktriangleright need not form $M^{-1}A$ but only compute matrix-vector products $M^{-1}(Ax)$
- want $M^{-1}x$ to be easy to compute (easier than $A^{-1}x$)
- \blacktriangleright so generally one extracts some $M \approx A$ that is easy to solve linear systems with
- \blacktriangleright however, $M \approx A$ may be insufficient/unnecessary, primary goal is to improve *conditioning to accelerate iterative methods, i.e., want* $\kappa(M^{-1}A) \ll \kappa(A)$
- E Common preconditioners select parts of \vec{A} or perform inexact factorization
	- § *(block-)Jacobi preconditioner takes* M *to be (block-)diagonal of* A
	- \blacktriangleright incomplete LU (ILU) preconditioners compute $M = LU \approx A$ (+pivoting)
	- § *ILU variants constraint sparsity of* L *and* U *factors during factorization to be the same or not much more than that of* A
	- § *good problem-specific preconditioners are often available in practice and theory, applying also to problems beyond linear systems (eigenvalue problems, optimization, approximate graph algorithms)*

Conjugate Gradient Convergence Analysis

- In previous discussion, we assumed K_n is invertible, which may not be the case if A has $m < n$ distinct eigenvalues, however, in exact arithmetic CG converges in $m - 1$ iterations¹
	- § *To prove this, we can analyze the 'minimizing' polynomials in the Krylov subspace in terms of the (real and positive) eigenvalues of* A
	- \blacktriangleright The approximate solution x_k obtained by CG after $k 1$ iterations is given by *minimizing* $z \in \mathcal{K}_k(A, b)$ *, which means* $z = \rho_{k-1}(A)b = \rho_{k-1}(A)Ax$ for some *polynomial* ρ_{k-1} *of degree* $k - 1$
	- \blacktriangleright *Now, we observe that minimizing the objective* $f(z)$ *is equivalent to minimizing*

$$
\|\mathbf{b} - \mathbf{A}\mathbf{z}\|_{\mathbf{A}^{-1}}^2 = \phi(\mathbf{z}) = (\mathbf{b} - \mathbf{A}\mathbf{z})^T \mathbf{A}^{-1} (\mathbf{b} - \mathbf{A}\mathbf{z}) = (\mathbf{x} - \mathbf{z})^T \mathbf{A} (\mathbf{x} - \mathbf{z})
$$

§ *Observe that*

$$
\phi(\boldsymbol{z}) = (\boldsymbol{x} - \boldsymbol{z})^T \boldsymbol{A} (\boldsymbol{x} - \boldsymbol{z}) = \underbrace{\boldsymbol{z}^T \boldsymbol{A} \boldsymbol{z} - 2 \boldsymbol{z}^T \boldsymbol{b}}_{2f(\boldsymbol{z})} - \underbrace{\boldsymbol{x}^T \boldsymbol{b}}_{\text{constant}}
$$

¹This derivation follows *Applied Numerical Linear Algebra* by James Demmel, Section 6.6.4

Conjugate Gradient Convergence Analysis (II)

$$
\blacktriangleright \text{ Using } z = \rho_{k-1}(A)Ax, \text{ we can simplify } \phi(z) = (x-z)^T A (x-z) \text{ as}
$$

$$
\phi(\boldsymbol{z}) = \Big(\boldsymbol{(I-\rho_{k-1}(A)A)x}\Big)^T\boldsymbol{A}\Big(\boldsymbol{(I-\rho_{k-1}(A)A)x}\Big) = \boldsymbol{x}^T\boldsymbol{q}_k(A)\boldsymbol{A}\boldsymbol{q}_k(A)\boldsymbol{x}
$$

where $\mathcal{Q}_k \ni q_k(\xi) = 1 - \rho_{k-1}(\xi) \cdot \xi$ *can be any degree* k *polynomial with* $q_k(0) = 1$ *(or in matrix form,* $q_k(S) = I - \rho_{k-1}(S)S$ *with* $q_k(O) = I$ *), so* $\phi(\boldsymbol{x}_k) = \min_{z \in \mathcal{K}_k(\boldsymbol{A},\boldsymbol{b})} \phi(\boldsymbol{z}) = \min_{q_k \in \mathcal{Q}_k} \boldsymbol{x}^T \boldsymbol{q}_k(\boldsymbol{A}) \boldsymbol{A} \boldsymbol{q}_k(\boldsymbol{A}) \boldsymbol{x}$

 \blacktriangleright We can bound the objective based on the eigenvalues of $\bm{A} = \bm{Q}\bm{\Lambda}\bm{Q}^T$ using the identity $\boldsymbol{p}(\boldsymbol{A}) = \boldsymbol{Q}\boldsymbol{p}(\boldsymbol{\Lambda})\boldsymbol{Q}^T,$

$$
\phi(\bm{z}) = \bm{x}^T \bm{Q} \bm{q}_k(\bm{\Lambda}) \bm{\Lambda} \bm{q}_k(\bm{\Lambda}) \bm{Q}^T \bm{x} \\ \leqslant \max_{\lambda_i \in \lambda(\bm{A})} (q_k(\lambda_i)^2) \underbrace{\bm{x}^T \bm{Q} \bm{\Lambda} \bm{Q}^T \bm{x}}_{\phi(\bm{x}_0)}
$$

Conjugate Gradient Convergence Analysis (III)

 \blacktriangleright Using our bound on the square of the residual norm $\phi(z)$, we can see why CG converges after $m - 1$ iterations if there are only $m < n$ distinct eigenvalues

$$
\phi(\boldsymbol{x}_k) = \min_{q_k \in \mathcal{Q}_k} \phi(\boldsymbol{z}) \leq \min_{q_k \in \mathcal{Q}_k} \max_{\lambda_i \in \lambda(\boldsymbol{A})} (q_k(\lambda_i)^2) \phi(\boldsymbol{x}_0)
$$

consequently, the residual norm $\|r_k\|_{\bm{A}^{-1}} = \surd \phi(x_k)$ decreases as

$$
\frac{\|\bm{r}_k\|_{\bm{A}^{-1}}}{\|\bm{r}_0\|_{\bm{A}^{-1}}}\leqslant \min_{q_k\in\mathcal{Q}_k}\max_{\lambda_i\in\lambda(\bm{A})}|q_k(\lambda_i)|
$$

- \blacktriangleright To see that the residual goes to 0, we find a suitable polynomial in \mathcal{Q}_m (the set of polynomials q_m of degree m with $q_m(0) = 1$)
	- $▶$ Specifically, we select q_m to be zero at each distinct eigenvalue $λ_1, …, λ_m$ of A
 \Box^m $()$

$$
q_m(\xi) = \frac{\prod_{j=1}^m (\lambda_i - \xi)}{\prod_{j=1}^m \lambda_i}
$$

while also satisfiying $q_m(0) = 1$

 \blacktriangleright This polynomial implies that $\|r_m\| = \phi(\bm{x}_m) = 0$ since $\max_{\lambda_i \in \lambda(\bm{A})} q_m(\lambda_i)^2 = 0$

Round-off Error in Conjugate Gradient

- ► CG provides strong convergence quarantees for SPD matrices in exact arithmetic
	- § *Classically, CG was viewed as a direct method, since its guaranteed to convergence in* n *iterations*
	- § *In practice, round-o error prevents CG from achieving this for realistic matrices, so CG was actually abandoned for a while due to being viewed as unstable*
	- § *Later, it was realized that CG is highly competitive as an iterative method*
- \triangleright Due to round-off CG may stagnate / have plateaus in convergence
	- ▶ A formal analysis of round-off error² reveals that CG with round-off is equivalent *to exact CG on a matrix of larger dimension, whose eigenvalues are clustered around those of* A
	- § *Using this view, CG convergence plateaus may be explained by the polynomial* q^k *developing more and more zeros near the same eigenvalue of* A

²A. Greenbaum and Z. Strakos, SIMAX 1992

Graph and Matrix Duality

- § graphs have have a natural correspondence with sparse matrices
	- \blacktriangleright consider an unweighted undirected graph $G = (V, E)$ with n vertices and m *edges*
	- \blacktriangleright *the adjacency matrix* A of g has n rows/columns for each edge, and $a_{ij} = 1$ if $(i, j) \in E$
	- § A *is symmetric because* G *is undirected, weighted and directed graphs can be expressed similarly with* A
- \triangleright matrix-based representations of graphs can be used to devise algorithms
	- § *combinatorial algorithms (e.g., breadth-first search or bellman-ford for shortest* paths) may be expressed by linear algebra operations on a different semiring
		- **▶ for example, for shortest paths, the** $(\min, +)$ semiring is used in place of the *standard* $(+, \times)$
		- \blacktriangleright *writing matrix operations on this semiring as* (\otimes, \oplus) , the distance matrix is

 $\boldsymbol{I} \oplus \boldsymbol{A} \oplus (\boldsymbol{A} \otimes \boldsymbol{A}) \oplus \cdots \oplus \boldsymbol{A}^n$

since $d_{ij} = \min_{k \in \{1,...,n\}} \min_{u_1,...,u_k} a_{iu_1} + a_{u_1u_2} + \cdots + a_{u_{k-1}u_k}$

§ *approximations to graph problems may also be obtained via numerical optimization*

Graph Partitioning from Eigenvectors

- \blacktriangleright The Laplacian matrix provides a model of interactions on a graph that is useful in many contexts
	- \blacktriangleright the Laplacian matrix of an unweighted graph is $D A$ where D is a diagonal *matrix containing vertex degrees and* A *is the adjacency matrix*
	- § *common 2D/3D grid discretization of numerical partial dierential equations yield a Laplacian matrix*
- \blacktriangleright The second-smallest-eigenvalue eigenvector of the Laplacian (the Fiedler vector), gives a good partitioning of the graph
	- § *One of the eigenvectors of the Laplacian has eigenvalue* 0 *and is simply the 1s vector*
	- § *If the graph is disconnected, the null-space has dimension at least 2*

Newton's Method

 \blacktriangleright Newton's method in n dimensions is given by finding minima of n -dimensional quadratic approximation using the gradient and Hessian of f :

$$
f(\boldsymbol{x}_k + \boldsymbol{s}) \approx \hat{f}(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \boldsymbol{s}^T \nabla f(\boldsymbol{x}_k) + \frac{1}{2} \boldsymbol{s}^T \boldsymbol{H}_f(\boldsymbol{x}_k) \boldsymbol{s}.
$$

The minima of this function can be determined by identifying critical points $\mathbf{0} = \nabla \hat{f}(\mathbf{s}) = \nabla f(\mathbf{x}_k) + \mathbf{H}_f(\mathbf{x}_k)\mathbf{s},$

thus to determine s *we solve the linear system,*

$$
\boldsymbol{H}_f(\boldsymbol{x}_k)\boldsymbol{s} = -\nabla f(\boldsymbol{x}_k).
$$

Assuming invertibility of the Hessian, we can write the Newton's method iteration as

$$
\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \underbrace{\boldsymbol{H}_f(\boldsymbol{x}_k)^{-1} \nabla f(\boldsymbol{x}_k)}_s.
$$

Quadratic convergence follows by equivalence to Newton's method for solving nonlinear system of optimality equations $\nabla f(x) = 0$.

Nonlinear Least Squares

§ An important special case of multidimensional optimization is *nonlinear least squares*, the problem of fitting a nonlinear function $f_{\bm{x}}(t)$ so that $f_{\bm{x}}(t_i) \approx y_i$: For example, consider fitting $f_{\left[x_1,x_2\right]}(t)=x_1\sin(x_2t)$ so that

$$
\begin{bmatrix} f_{[x_1,x_2]}(1.5) \\ f_{[x_1,x_2]}(1.9) \\ f_{[x_1,x_2]}(3.2) \end{bmatrix} \approx \begin{bmatrix} -1.2 \\ 4.5 \\ 7.3 \end{bmatrix}.
$$

 \blacktriangleright We can cast nonlinear least squares as an optimization problem to minimize residual error and solve it by Newton's method:

Define residual vector function $r(x)$ so that $r_i(x) = y_i - f_x(t_i)$ and minimize

$$
\phi(\boldsymbol{x}) = \frac{1}{2} ||\boldsymbol{r}(\boldsymbol{x})||_2^2 = \frac{1}{2} \boldsymbol{r}(\boldsymbol{x})^T \boldsymbol{r}(\boldsymbol{x}).
$$

Now the gradient is $\nabla \phi(\boldsymbol{x}) = \boldsymbol{J}^T_{\boldsymbol{r}}(\boldsymbol{x}) \boldsymbol{r}(\boldsymbol{x})$ and the Hessian is

$$
\boldsymbol{H}_{\phi}(\boldsymbol{x}) = \boldsymbol{J}_{\boldsymbol{r}}^T(\boldsymbol{x})\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}) + \sum_{i=1}^m r_i(\boldsymbol{x})\boldsymbol{H}_{r_i}(\boldsymbol{x}).
$$

Gauss-Newton Method

▶ The Hessian for nonlinear least squares problems has the form:

$$
\boldsymbol{H}_{\phi}(\boldsymbol{x}) = \boldsymbol{J}_{\boldsymbol{r}}^T(\boldsymbol{x})\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}) + \sum_{i=1}^m r_i(\boldsymbol{x})\boldsymbol{H}_{r_i}(\boldsymbol{x}).
$$

The second term is small when the residual function $r(x)$ *is small, so approximate*

$$
\boldsymbol{H}_{\phi}(\boldsymbol{x}) \approx \hat{\boldsymbol{H}}_{\phi}(\boldsymbol{x}) = \boldsymbol{J}_{\boldsymbol{r}}^T(\boldsymbol{x})\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}).
$$

§ The *Gauss-Newton* method is Newton iteration with an approximate Hessian:

$$
\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \hat{\boldsymbol{H}}_{\phi}(\boldsymbol{x}_k)^{-1} \nabla f(\boldsymbol{x}_k) = \boldsymbol{x}_k - (\boldsymbol{J}_r^T(\boldsymbol{x}_k) \boldsymbol{J}_r(\boldsymbol{x}_k))^{-1} \boldsymbol{J}_r^T(\boldsymbol{x}_k) \boldsymbol{r}(\boldsymbol{x}_k).
$$

Recognizing the normal equations, we interpret the Gauss-Newton method as solving linear least squares problems $J_r(x_k)s_k \cong r(x_k), x_{k+1} = x_k - s_k$.

Constrained Optimization Problems

§ We now return to the general case of *constrained* optimization problems:

$$
\min_{\bm{x}} f(\bm{x}) \quad \text{subject to} \quad \bm{g}(\bm{x}) = \bm{0} \quad \text{and} \quad \bm{h}(\bm{x}) \leqslant \bm{0}
$$

When f *is quadratic, while* h*,* g *is linear, this is a quadratic optimization problem.*

- \triangleright Generally, we will seek to reduce constrained optimization problems to a series of simpler optimization problems:
	- § *sequential quadratic programming: solve a series of constrained quadratic optimization problems*
	- § *interior point methods: solve a series of more complicated (more ill-conditioned) unconstrained optimization problems*

Lagrangian Duality

▶ The Lagrangian function with constraints $g(x) = 0$ and $h(x) \leq 0$ is

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \begin{bmatrix} \boldsymbol{h}(\boldsymbol{x}) \\ \boldsymbol{g}(\boldsymbol{x}) \end{bmatrix}
$$

The constrained minima of $f(x)$ *must be saddle points of the Lagrangian function*

 \triangleright The Lagrangian dual problem is an unconstrained optimization problem:

$$
\max_{\lambda} q(\lambda), \quad q(\lambda) = \begin{cases} \min_{x} \mathcal{L}(x, \lambda) & \text{if } \lambda \geq 0 \\ -\infty & \text{otherwise} \end{cases}
$$

The unconstrained optimality condition $\nabla q(\boldsymbol\lambda^*)=\boldsymbol{0},$ implies

$$
\max\left(\boldsymbol{\lambda}^*,\begin{bmatrix} \boldsymbol{h}(\boldsymbol{x}) \\ \boldsymbol{g}(\boldsymbol{x}) \end{bmatrix}\right) = \boldsymbol{0}
$$

when $\lambda_i^* = 0$, we say the i th constraint is inactive at the minimum point.

Optimality and Complementarity Slackness Condition

Consider the inequality-constrained optimization problem, $h(x) \leq 0$,

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{h}(\boldsymbol{x})
$$

- \blacktriangleright The pair x^* and λ^* are a primal-dual optimal solution x^* is feasible, $\lambda^* \geqslant 0$, and strong duality holds, $f(\boldsymbol{x^*}) = q(\boldsymbol{\lambda^*}) = \mathcal{L}(\boldsymbol{x^*}, \boldsymbol{\lambda^*})$
	- \blacktriangleright The complementarity slackness condition $\max{(\boldsymbol{\lambda^*},\boldsymbol{h}(\boldsymbol{x}))} = \boldsymbol{0}$ follows since

$$
f(\boldsymbol{x}^*) = \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = f(\boldsymbol{x}^*) + \boldsymbol{\lambda}^{*T} \boldsymbol{h}(\boldsymbol{x}^*)
$$

so, since $\bm{x^*}$ is feasible, we have $\bm{h}(\bm{x^*})\geqslant 0$ and consequently $\lambda_i^*h_i(\bm{x^*})=0$

- § *Complementarity slackness must be satisfied along with other KKT conditions by any optimal primal-dual solution if* f *is dierentiable and strong duality holds*
- § *If* f *is convex, then strong duality holds and further the KKT conditions are not* $only necessary but sufficient$

Sequential Quadratic Programming

§ *Sequential quadratic programming (SQP)* reduces a nonlinear equality constrained problem to a sequence of constrained quadratic programs via a Taylor expansion of the Lagrangian function $\mathcal{L}_f(\bm{x},\bm{\lambda}) = f(\bm{x}) + \bm{\lambda}^T\bm{g}(\bm{x})$:

$$
\begin{aligned} q(\boldsymbol{x}_{k}+\boldsymbol{s},\boldsymbol{\lambda}_{k}+\boldsymbol{\delta}) =& \mathcal{L}_{f}(\boldsymbol{x}_{k},\boldsymbol{\lambda}_{k})+\boldsymbol{s}^{T}(\nabla f(\boldsymbol{x}_{k})+\boldsymbol{J}_{\boldsymbol{g}}^{T}(\boldsymbol{x}_{k})\boldsymbol{\lambda}_{k})+\frac{1}{2}\boldsymbol{s}^{T}\boldsymbol{B}(\boldsymbol{x}_{k},\boldsymbol{\lambda}_{k})\boldsymbol{s} \\ &+\boldsymbol{\delta}^{T}(\boldsymbol{J}_{\boldsymbol{g}}(\boldsymbol{x}_{k})\boldsymbol{s}+\boldsymbol{g}(\boldsymbol{x}_{k})) \end{aligned}
$$

where $\displaystyle \boldsymbol B(\boldsymbol x, \boldsymbol \lambda) = \boldsymbol H_f(\boldsymbol x) + \sum_{i=1}^m \lambda_i \boldsymbol H_{g_i}(\boldsymbol x)$

► SQP ignores the constant term $\mathcal{L}_f(\bm{x}_k,\bm{\lambda}_k)$ and minimizes s while treating δ as a Lagrange multiplier:

The above unconstrained quadratic program corresponds to the Lagrangian form of the constrained quadratic program

$$
\max_{\boldsymbol{s}} \boldsymbol{s}^T (\nabla f(\boldsymbol{x}_k) + \boldsymbol{J}_{\boldsymbol{g}}^T(\boldsymbol{x}_k) \boldsymbol{\lambda}_k) + \frac{1}{2} \boldsymbol{s}^T \boldsymbol{B}(\boldsymbol{x}_k, \boldsymbol{\lambda}_k) \boldsymbol{s}
$$

with constraint $J_q(x_k)s = -g(x_k)$ *.*

Interior Point Methods

 \triangleright Barrier functions provide an effective way of working with inequality constraints $h(x) \leqslant 0$: *Inverse barrier function:*

$$
\phi_{\mu}(\boldsymbol{x}) = f(\boldsymbol{x}) - \mu \sum_{i=1}^{m} \frac{1}{h_i(\boldsymbol{x})}
$$

Logarithmic barrier function:

$$
\phi_{\mu}(\boldsymbol{x}) = f(\boldsymbol{x}) - \mu \sum_{i=1}^{m} \log(-h_i(\boldsymbol{x}))
$$

in theory with sufficiently small steps we have $x_\mu^\ast \to x^\ast$ as $\mu \to 0$

- \blacktriangleright Interior point methods additionally incorporate Lagrangian optimization
	- § *can be combined with SQP or alternating minimization*
	- § *slack variables with nonnegativity constraints reduce general inequality constraints to nonnegativity and equality constraints*
	- § *optimality conditions for augmented Lagrangian conditions yield linear system*
	- § *conditioning of interior point linear systems suers as* µ *decreases*

Karush-Kuhn-Tucker (KKT) conditions

Consider the linear-constrained Quadratic program (QP):

$$
\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} x^T H x + x^T c
$$

s.t. $Ax = b, Cx \geq d$

Its Lagrangian function may be used to derive an interior point method

$$
L(x, \lambda, \nu) = \frac{1}{2}x^T H x + x^T c - \lambda^T (Ax - b) - \nu^T (Cx - d)
$$

The first-order optimality (KKT) conditions are

$$
\nabla_x L(x, \lambda, \nu) = 0
$$

$$
Ax - b = 0
$$

$$
Cx - d \ge 0
$$

$$
\nu^T (Cx - d) = 0
$$

$$
\nu \ge 0
$$

Primal-dual Interior Point Method (IPM)

Solve perturbed KKT conditions after introducing slack variables $s \in \mathbb{R}^{m_2}$

$$
Hx + c - A^T \lambda - C^T \nu = 0
$$

\n
$$
Ax - b = 0
$$

\n
$$
Cx - d - s = 0
$$

\n
$$
SVe = \sigma \mu e
$$

\n
$$
s, \nu > 0
$$

where

$$
V = diag(\nu_1, ..., \nu_{m_2}), S = diag(s_1, ..., s_{m_2}), e = [1, ... 1]^T \in \mathbb{R}^{m_2}
$$

$$
\mu = \frac{s^T \nu}{m_2}, \quad \sigma \in [0, 1]
$$

Interior Point Method (IPM): KKT system

Newton's method applied to KKT equations results in linear systems

$$
\begin{bmatrix} -H & A^T & C^T \\ A & 0 & 0 \\ C & 0 & D^{(k)} \end{bmatrix} \begin{pmatrix} \Delta x^{(k)} \\ \Delta \lambda^{(k)} \\ \Delta \nu^{(k)} \end{pmatrix} = - \begin{pmatrix} r_g^{(k)} \\ r_e^{(k)} \\ r_a^{(k)} \end{pmatrix}
$$

where $D^{(k)} =$ $\left(V^{(k)} \right)^{-1}$ $S^{(k)}$ is diagonal and changing with iteration k . These linear systems become ill-conditioned as the interior point method approaches converges

- \blacktriangleright the values of $D^{(k)} =$ ` $\left. V^{(k)}\right) ^{-1}$ S $^{(k)}$ vary greatly in magnitude
- \blacktriangleright the values of $S^{(k)}$ go to zero if inequality constraint is active at the local *minima*
- \blacktriangleright at the same time, $\nu_i^{(k)}$ $\bm{s}_i^{(k)}s_i^{(k)}$ multiply to a fixed value that scales with σ