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Conditioning
» Absolute Condition Number:

The absolute condition number is a property of the problem, which measures
its sensitivity to perturbations in input

perturbation in output
perturbation in input
For problem f at input x it is simply the derivative of f at z,
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When considering a space of inputs X it is kgps = MmaxXzex

» (Relative) Condition Number:

The relative condition number considers relative perturbations in input and
output, so that
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Posedness and Conditioning

» What is the condition number of an ill-posed problem?

>

If the condition number is bounded and the solution is unique, the problem is
well-posed

An ill-posed problem f either has no unique solution or has a (relative)
condition number of k(f) = ©

This condition implies that the solutions to problem f are continuous and
differentiable in the given space of possible inputs to f

Sometimes well-posedness is defined to only require continuity

Generally, (f) can be thought of as the reciprocal of the distance (in an
appropriate geometric embedding of problem configurations) from f to the
nearest ill-posed problem



Matrix Condition Number

» The matrix condition number x(A) is the ratio between the max and min
distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

> The max distance to center is given by the vector maximizing max||q|—1 || Az||o.

> The min distance to center is given by the vector minimizing
min |z =1 ||Az|2 = 1/(max||z)=1 [|A™"2|2).
» Thus, we have that k(A) = ||A||2]||A7Y]2

» The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product: Consider y + dy = A(x + dx), assume ||z||2 = 1

» In the worst case, ||y||2 is minimized, that is ||y||2 = 1/||A7Y|2
> In the worst case, ||0y||2 is maximized, that is ||dy||2 = || Al|2]|0y]|2

> So [|6yll2/llyll2 is at most k(A)[|6z[2/||2]|2



Singular Value Decomposition
» The singular value decomposition (SVD)
We can express any matrix A as

A=UxVT
where U and V are orthogonal, and X is square nonnegative and diagonal,

Omax
> =
Omin
Any matrix is diagonal when expressed as an operator mapping vectors from
a coordinate system given by V' to a coordinate system given by U™ .

» Condition number in terms of singular values

> We have that | Ally = omax and if A=t exists, |A~Y|s = 1/omin

» Consequently, k(A) = Omax/Tmin



Visualization of Matrix Conditioning
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Linear Least Squares
» Find * = argming g ||Ax — b||2 where A € R™*"™:

Since m = n, the minimizer generally does not attain a zero residual Ax — b.
We can rewrite the optimization problem constraint via

x* = argmin || Az — b||3 = argmin [(AZB — b7 (Ax - b)]

xeR™ xeR™

» Giventhe SVD A = UXVT we have z* = VXTUT b, where ' contains the
—

At
reciprocal of all nonzeros in 3, and more generally 1 denotes pseudoinverse:

» The minimizer satisfies USV Ta* >~ b and consequently also satisfies
Sy*~d wherey* =VTax*andd = U"b.

> The minimizer of the reduced problem is y* = X'd, so y; = d;/o; for
ie{l,...,ntandy; =0forie{n+1,...,m}.



. Demo: Normal equations vs Pseudoinverse
Normal E quations Demo: Issues with the normal equations

» Normal equations are given by solving AT Az = AT'b:
If AT Ax = ATb then

UzvhHTusvTiz = (U=vTTb
»Tyvie = xTUuTs
Vig = (2T 127Uy = =TUTb
xz=VIUTb =2*

» However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm

Generally we have k(AT A) = k(A)? (the singular values of AT A are the
squares of those in A). Consequently, solving the least squares problem via
the normal equations may be unstable because it involves solving a problem
that has worse conditioning than the initial least squares problem.


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html

Solving the Normal Equations

» If A is full-rank, then AT A is symmetric positive definite (SPD):
» Symmetry is easy to check (AT A)T = AT A.
» A being full-rank implies o, > 0 and further if A = UX VT we have

ATA=VT2V

which implies that rows of V are the eigenvectors of AT A with eigenvalues X2
since ATAVT = vTx2

» Since AT A is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

ATA =LL"”



QR Factorization
» If A is full-rank there exists an orthogonal matrix Q and a unique
upper-triangular matrix R with a positive diagonal such that A = QR
» Given ATA = LL”, we can take R = L™ and obtain Q = AL~ since
L~ YAT AL~T = I implies that Q has orthonormal columns.
KN
» A reduced QR factorization (unique part of general QR) is defined so that
Q € R™*™ has orthonormal columns and R is square and upper-triangular
A full QR factorization gives Q € R™*™ and R € R™*", but since R is upper
triangular, the latter m — n columns of Q are only constrained so as to keep
Q orthogonal. The reduced QR factorization is given by taking the first n
columns Q and Q the upper-triangular block of R, R giving A = QR.
» We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

ATAz=A"p = RT QTQ Rz = RTQTb = Rx-= QTb
——
I



Computing the QR Factorization

» The Cholesky-QR algorithm uses the normal equations to obtain the QR
factorization
» Compute ATA = LLT, take R = L, and solve for Q triangular linear systems
LQT — AT
» If Aism x n, forming AT A has cost mn?, computing Cholesky factorization
has cost (2/3)n?, and solving the triangular systems (if Q is needed) costs mn?,
yielding total cost 2mn? + (2/3)n3
» However, this method is unstable since AT A is ill-conditioned. This is
addressible by iterating on the computed (nearly-orthogonal) Q factor
(CholeskyQR2).
» Orthogonalization-based methods are most efficient and stable for QR
factorization of dense matrices
> Apply a sequene of orthogonal transformations Q1, ..., Qy to reduce A to
triangulr form (Q1---Qr)TA =R
» Householder QR uses rank-1 perturbations of the identity matrix (reflectors)
Q: = I — 2u;ul to zero-out each sub-column of A
> Givens rotations zero-out a single entry at a time
» Both approaches have cost O(mn?) with similar constant to Cholesky-QR



Eigenvalue Decomposition
» If a matrix A is diagonalizable, it has an eigenvalue decomposition

A=XDXx!
where X are the right eigenvectors, X ~! are the left eigenvectors and D are
eigenvalues
AX = [A$1 s Amn] =XD = [dnscl s dnnmn] .

» If A is symmetric, its right and left singular vectors are the same, and
consequently are its eigenvectors.

» More generally, any normal matrix, A" A = AAH, has unitary eigenvectors.
» A and B are similar, if there exist Z such that A = ZBZ!
» Normal matrices are unitarily similar (Z—' = ZH) to diagonal matrices

» Symmetric real matrices are orthogonally similar (Z—' = Z™) to real diagonal
matrices

» Hermitian matrices are unitarily similar to real diagonal matrices



Similarity of Matrices

matrix similarity reduced form
SPD | orthogonal | real positive diagonal
real symmetric | orthogonal | real tridiagonal
real diagonal
Hermitian unitary real diagonal
normal unitary diagonal
real | orthogonal | real Hessenberg
diagonalizable invertible diagonal
arbitrary unitary triangular
invertible bidiagonal




Rayleigh Quotient

» For any vector x that is close to an eigenvector, the Rayleigh quotient
provides an estimate of the associated eigenvalue of A:

() T Ax
)= —7i—.
PA g

» If x is an eigenvector of A, then pa(x) is the associated eigenvalue.

> Moreover, for y = Ax, the Rayleigh quotient is the best possible eigenvalue
estimate given x and y, as it is the solution o to xa =~ y.

> The normal equations for this scalar-output least squares problem are (assuming

Ais real),
T T 2Ty «TAx
rTrroa=xr'yY = a=_—F-=—F_.
r'x T+ xT




Introduction to Krylov Subspace Methods
» Krylov subspace methods work with information contained in the n x k matrix

K = [d?() Axg --- Ak_lwo]
We seek to best use the information from the matrix vector product results
(columns of K},) to solve eigenvalue problems.
> A is similar to companion matrix C = K, ' AK,:
Letting kY — Ai~lg we observe that

AK, = |ARD - AR ARD| =[R2 kD AR

therefore premultiplying by K,! transforms the first n — 1 columns of AK,,
into the last n — 1 columns of I,

K;lAan[Kglkg) e K K,;lAkSL")]

:[62 S ep KglAk,(ln)]



Krylov Subspaces

» Given Q. R, = K;, we obtain an orthonormal basis for the Krylov subspace,

Ki(A,xo) = span(Qy) = {p(A)xo : deg(p) < k},
where p is any polynomial of degree less than k.

» The Krylov subspace includes the k£ — 1 approximate dominant eigenvectors
generated by k — 1 steps of power iteration:
> The approximation obtained from k — 1 steps of power iteration starting from x
is given by the Rayleigh-quotient of y = AFx,,.
> This vector is within the Krylov subspace, y € K.(A, xy).

> Consequently, Krylov subspace methods will generally obtain strictly better
approximations of the dominant eigenpair than power iteration.



Krylov Subspace Methods

> The k x k matrix Hy = QL AQ) minimizes ||AQx, — QrHy||2:
The minimizer X for the linear least squares problem QX =~ AQ),, is (via the
normal equations) X = QI AQy, = Hj,

» H is upper-Hessenberg, because the companion matrix C,, is
upper-Hessenberg:
Note that Hy, is the leading k-by-k minor of H,, and

H, = Q'AQ, = RK;'AK,R™' = RC,R™!

is a product of three matrices: upper-triangular R, upper-Hessenberg C,, ,
and upper-triangular R, which results in upper-Hessenberg H,,.



Rayleigh-Ritz Procedure

» The eigenvalues/eigenvectors of H, are the Ritz values/vectors:

H,=XDX™!
eigenvalue approximations based on Ritz vectors X are given by Q. X.
» The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only H;, and Qy:

Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz
value Amax(Hy},) will be the maximum Rayleigh quotient of any vector in
Ky = span(Qy,),

z! Ax ¥ QI AQy _ max y Hy

max T = Imax T T
zespan(Qy) T T y#0 Yy y#0 Yy

= )\max(Hk:)a

which is the best approximation to Amgx(A) = maxy.o a’ Az gy qilable in Kp.

T

The quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.



Low Rank Matrix Approximation

» Given a matrix A € R™*" seek rank r < m,n approximation

> Given by matrices U e R™*" and V € R™"*" so
A~UVT

> Reduces memory footprint and cost of applying A from mn to mr + nr
» This factorization is nonunique, UVT = (UM)(VM~-T)T

» Eckart-Young (optimal low-rank approximation by SVD) theorem
> Truncated SVD approximates A as

r

A T

Ax A= Z oiu;;
i=1

where o1, ...,0, are the largest r singular values, while w; and v; are the
associated left and right singular vectors
> Eckart-Young theorem demonstrates that the truncated SVD minimizes
|A—Al, and |A—A|p
— —

Ort1 min(m,n)
rt Zi=r+l Gi



Rank Revealing Matrix Factorizations

» Computing the SVD
> Can compute full SVD with O(mmn min(m,n)) cost via bidiagonalization

> unconditionally stable and accurate
> inefficient for low r or if A is sparse
> Given any low-rank approximation composed of U and V', compute QR of each

and SVD of product of R factors to obtain SVD with total cost O((m + n)r?)

» QR with column pivoting
> By selecting columns of largest norm in the trailing matrix during QR
factorization, we obtain a pivoted factorization with permutation matirx P

AP = QR

» Truncating this factorization can be done after applying r Householder
reflectors (or another QR algorithm on r columns), with cost O((m + n)r)
» Approximation is somewhat suboptimal in theory, but in practice almost always

as accurate as truncated SVD



Orthogonal Iteration

» For sparse matrices, QR factorization creates fill, so must revert to iterative
methods

> Can find SVD of A by implicit products with AT A or AAT, since left singular
vectors of A are eigenvectors of AT A

> Krylov subspace methods are effective for computing the largest eigenvector

> Deflation, e.g., A — (A — oyu v]) can be used to compute other eigenvectors

» Orthogonal iteration interleaves deflation and power iteration

> Given starting eigenvector guess U®) € R"*", compute Vit1) = AU and
obtain U1 as the Q factor of the QR of V' (it1)

» Converges to r largest eigenvectors, for SVD can compute V+1) = AT(AU®)
at each iteration

> QR factorization serves to orthogonalize each column w.r.t. eigenvectors being
converged to by previous columns



Randomized SVD

» Orthogonal iteration for SVD can also be viewed as a randomized algorithm

>

Suppose that we have an exact low-rank factorization A = UXVT with

2 c R’I"XY‘

IfU js a random orthogonal matrix, so is VU (©)

Consequently, AU js a set of r random linear combinations of columns of UX
Further, U = UMUMTU since

span(UW) = span(V W) = span(U),

the latter equality holds with probability 1

Consequently, we can compute SVD of U™ A (with cost O(nr?)) and recover
U by premultiplying the computed left singular vectors by U™

When A is not exactly low-rank, span of leading singular vectors can be
captured by oversampling (e.g., selecting each U to have r + 10 columns)
Initial guess U®) need not be orthogonal (Gaussian random performs well,
structured pseudo-random enables O(mnlogn) complexity for one-shot
randomized SVD), but better accuracy is obtained with orthogonality



Generalized Nystrom Algorithm

» The generalized Nystrém algorithm provides an efficient way of computing a
sketched low-rank factorization

> the rank k factorization of a matrix A is obtained via
A, = AST(S,AST)S,A

> where S, and Sy are sketch matrices

> no need to apply A to a general matrix, can define S, and S» as sparse or
structured (e.g., diagonal matrix times Fourier transform)

» Sketch matrices can be constructed to be Gaussian random, with awareness of
A (e.g., via leverage score sampling) or to be sparse (CountSketch)



Multidimensional Optimization
» Minimize f(x)
> In the context of constrained optimization, also have equality and or inequality
constraints, e.g., Ax =borx >0

> Unconstrained local optimality holds if V f(x*) = 0 and H¢(x*) is positive
semi-definite

> Reduces to solving nonlinear equations via optimality condition

> Unconstrained local optimality conditions are looser, need the gradient to be
zero or positive in all unconstrained directions at x*

> The condition V f(x*) = 0 implies poor conditioning, perturbations that change
the function value in the kth digit can change the sollution in the (k/2)th digit
> Quadratic optimization f(z) = 27 Az — bTx

> Quadratic optimization problems can provide local approximations to general
nonlinear optimization problems via Newton’s method (where A is the Hessian
and b" is the gradient)

> Equivalent to solving linear system Ax = b by optimality condition
> Accordingly, conditioning relative to perturbation in b is k(A)



Basic Multidimensional Optimization Methods
» Steepest descent: minimize f in the direction of the negative gradient:

Tpy1 = Tp — 4V f(Tk)
such that f(xy+1) = ming, f(zr — arVf(xk)), i.e. perform a line search
(solve 1D optimization problem) in the direction of the negative gradient.

> Given quadratic optimization problem f(z) = =" Az + b"x where A is
symmetric positive definite, the error e;, = x;, — x* satisfies

Umax(A) — Omin (A)

Omax(A) + omin(A)

» When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

» Convergence rate depends on the conditioning of A, since
Omax(A) — omin(A) _ k(A) -1
Omax(A) + omin(A)  k(A)+1°

llex+1lla = €£+1Aek+1 = llex||a




Gradient Methods with Extrapolation

» We can improve the constant in the linear rate of convergence of steepest
descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction x;, — x;_1):

Tpr1 = T — oV [(xp) + Be(Tr — Tr1)

» The heavy ball method, which uses constant «;, = o and 5, = 3, achieves
better convergence than steepest descent:

lexsalla = meru

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.



Conjugate Gradient Method

» The conjugate gradient method is capable of making the optimal (for a
quadratic objective) choice of oy, and ), at each iteration of an extrapolation
method:

(o, Br) = argmin {f (:ck — o, Vf(xg) + Bk — a:k_l))}

ag,Bk

> For SPD quadratic programming problems, conjugate gradient is an optimal first
order method, converging in n iterations.

» It implicitly computes Lanczos iteration, searching along A-orthogonal
directions at each step.

» Parallel tangents implementation of the method proceeds as follows

1. Perform a step of steepest descent to generate &, from xy,.
2. Generate x;1 by minimizing over the line passing through x;_, and &;.
The method is equivalent to CG for a quadratic objective function.



Krylov Optimization

» Conjugate gradient (CG) finds the minimizer of f(z) = 12”7 Az — b"x (which

satisfies optimality condition Az = b) within the Krylov subspace of A:

» It constructs Krylov subspace Ki(A,b) = span(b, Ab, ..., A"~ 'b).
> At the kth step conjugate gradient yields iterate

zi, = ||b][2Qi T} e,

where Q. is an orthogonal basis for Krylov subspace K\ (A, b) and
T, = QL AQy.
> This choice of x\, minimizes f(x) since

min x) = min
et f(x) min f(Qry)
= min y" Qf AQry — b" Qry
yeRk
= min y" Ty — ||bl|2e] y
yeRF

is minimized by y = ||b||T} "e:.



CG and Krylov Optimization
The solution at the kth step, y;, = ||b||>T} 'e; is obtained by CG from yj,.; with a
single matrix-vector product with A and vector operations with O(n) cost

>

The Lanczos method constructs Ty, from T}, using a matrix-vector product
with A

The change, Ty, 1 — [Tk } is of rank 2

Tpi1(k+1,k+1)
Consequently, the Sherman-Morrison-Woodbury formula (or an updated
factorization), which is for general M,

M 1uvTM!

Ty\—1 —1
(M= wwt) = M T

may be used to apply T,;rll with O(k) cost

CG does this implicitly at each step

Other Krylov iterative methods are available for solution to general (non-SPD)
linear systems, such as the generalized minimum residual method (GMRES)
and bi-conjugate gradient, which construct a basis for AAT and AT A



Preconditioning
» Convergence of iterative methods for Az = b depends on x(A), the goal of a
preconditioner M is to obtain x by solving
M™'Ax = M'b

with k(M1 A) < k(A)
> need not form M~ A but only compute matrix-vector products M~ (Ax)
» want M~'x to be easy to compute (easier than A~ 'x)
> so generally one extracts some M ~ A that is easy to solve linear systems with
|

however, M ~ A may be insufficient/unnecessary, primary goal is to improve
conditioning to accelerate iterative methods, i.e., want k(M1 A) « k(A)

» Common preconditioners select parts of A or perform inexact factorization

> (block-)Jacobi preconditioner takes M to be (block-)diagonal of A

> incomplete LU (ILU) preconditioners compute M = LU ~ A (+pivoting)

» ILU variants constraint sparsity of L and U factors during factorization to be
the same or not much more than that of A

» good problem-specific preconditioners are often available in practice and
theory, applying also to problems beyond linear systems (eigenvalue problems,
optimization, approximate graph algorithms)



Conjugate Gradient Convergence Analysis

» In previous discussion, we assumed K, is invertible, which may not be the
case if A has m < n distinct eigenvalues, however, in exact arithmetic CG
converges in m — 1 iterations’

> To prove this, we can analyze the ‘minimizing‘ polynomials in the Krylov
subspace in terms of the (real and positive) eigenvalues of A

> The approximate solution x;, obtained by CG after k — 1 iterations is given by
minimizing z € Ky (A, b), which means z = py_1(A)b = px_1(A)Ax for some
polynomial py._, of degree k — 1

> Now, we observe that minimizing the objective f(z) is equivalent to minimizing

|b—Az|4- =¢(2) = (b— Az)TA (b— Az) = (x — 2)T A(z — 2)
> Observe that

pz)=(x—2)TAx—2)=2TA2-22Tb— zTb

2f(2) constant

'This derivation follows Applied Numerical Linear Algebra by James Demmel, Section 6.6.4



Conjugate Gradient Convergence Analysis (II)
» Using z = pp_1(A)Ax, we can simplify ¢(z) = (x — 2)T A(z — 2) as

8(2) = (I~ prr(A)A)z) A((T ~ pyor(A)A)z) = 27 gi(4) Agi(A)z

where QO 3 qi(§) = 1 — pr—1(€) - £ can be any degree k polynomial with
qr(0) = 1 (or in matrix form, q;(S) = I — py_1(S)S with q,(O) = I), so
= mj = min ' q;(A)Agr(A
o(xk) i ¢(2) Jnin qr(A)Aqir(A)z

» We can bound the objective based on the eigenvalues of A = QAQT using
the identity p(A) = Qp(A)Q7,

$(z) = 2" Qqr(A)Aqi(A)Q

< >\Z 2 T A T
Ailgfgl)(czk( )z QAQ  x
¢(x0)



Conjugate Gradient Convergence Analysis (III)

» Using our bound on the square of the residual norm ¢(z), we can see why CG
converges after m — 1 iterations if there are only m < n distinct eigenvalues

é(@y) = min ¢(z) < min Agﬁﬁ)(Qk()\i)Z)éf)@o)

consequently, the residual norm |ri| o1 = 1/ é(xx) decreases as

”rkHA—l )
< min max A
”TOHA*l h ax€QK MieA(A) ‘Qk( Z)|

» To see that the residual goes to 0, we find a suitable polynomial in Q,, (the
set of polynomials g, of degree m with ¢,,,(0) = 1)

» Specifically, we select q,,, to be zero at each distinct eigenvalue \y, ..., \,, of A
() = 1100
" H;n=1 Ai

while also satisfiying ¢,,(0) = 1
> This polynomial implies that |r.,| = ¢(xm) = 0 since maxy,cx(a) gm(Xi)> = 0



Round-off Error in Conjugate Gradient

» CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

> Classically, CG was viewed as a direct method, since its guaranteed to
convergence in n iterations

» In practice, round-off error prevents CG from achieving this for realistic
matrices, so CG was actually abandoned for a while due to being viewed as
unstable

> Later, it was realized that CG is highly competitive as an iterative method

» Due to round-off CG may stagnate / have plateaus in convergence

» A formal analysis of round-off error? reveals that CG with round-off is equivalent
to exact CG on a matrix of larger dimension, whose eigenvalues are clustered
around those of A

> Using this view, CG convergence plateaus may be explained by the polynomial
qr. developing more and more zeros near the same eigenvalue of A

2A. Greenbaum and Z. Strakos, SIMAX 1992



Graph and Matrix Duality
» graphs have have a natural correspondence with sparse matrices

> consider an unweighted undirected graph G = (V, E) with n vertices and m
edges

> the adjacency matrix A of g has n rows/columns for each edge, and a;; = 1 if
(i.j)e E

> A is symmetric because G is undirected, weighted and directed graphs can be
expressed similarly with A

» matrix-based representations of graphs can be used to devise algorithms
» combinatorial algorithms (e.g., breadth-first search or bellman-ford for shortest
paths) may be expressed by linear algebra operations on a different semiring
> for example, for shortest paths, the (min, +) semiring is used in place of the
standard (+, x)
> writing matrix operations on this semiring as (®,®), the distance matrix is

IOA®(AQA)D - DA"

..... n} rninul,...,u;C Qijuy + QAuyuo + .- Aup_qup
> approximations to graph problems may also be obtained via numerical
optimization

since dij = mingeqy



Graph Partitioning from Eigenvectors

» The Laplacian matrix provides a model of interactions on a graph that is
useful in many contexts

> the Laplacian matrix of an unweighted graph is D — A where D is a diagonal
matrix containing vertex degrees and A is the adjacency matrix

> common 2D/3D grid discretization of numerical partial differential equations
yield a Laplacian matrix

» The second-smallest-eigenvalue eigenvector of the Laplacian (the Fiedler
vector), gives a good partitioning of the graph

> One of the eigenvectors of the Laplacian has eigenvalue 0 and is simply the 1s
vector
> If the graph is disconnected, the null-space has dimension at least 2



Newton’s Method
» Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f:
. 1
Flag+8) ~ f(s) = f(@r) + 8"V (i) + 58" Hy(wy)s.
The minima of this function can be determined by identifying critical points

0= Vf(s) = Vf(xx) + He(zy)s,
thus to determine s we solve the linear system,
Hy(wp)s = =V f(x).

Assuming invertibility of the Hessian, we can write the Newton’s method
iteration as
Tyt = o — Hp(xp) 'V f(wp)

~
S

Quadratic convergence follows by equivalence to Newton’s method for solving
nonlinear system of optimality equations V f(x) = 0.




Nonlinear Least Squares
» An important special case of multidimensional optimization is nonlinear least
squares, the problem of fitting a nonlinear function f,(¢) so that f(t;) ~ v;:

For example, consider fitting fi,, .,)(t) = z1sin(zat) so that

:131,332 ( ) —1.2
zm 1(L9) | ~ | 45
l‘17m‘2 ( ) 73

» We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:

Define residual vector function r(x) so that r;(x) = y; — f«(t;) and minimize
1 1

o) = 5lIr(@)I = ;

Now the gradient is V¢(x) = JI' (x)r(x) and the Hessian is

™

Hy(x) = I} (x)Jp(x) + > ri(z)H
=1

r(x)lr(x).



Gauss-Newton Method

» The Hessian for nonlinear least squares problems has the form:
m
Hy(@) = J} (@), () + ), ri(x)H,, ().
i=1
The second term is small when the residual function r(x) is small, so
approximate
Hy(z) ~ Hy(x) = I} () ().
» The Gauss-Newton method is Newton iteration with an approximate Hessian:

@1 =z, — Hy(xn) 'V () = 2 — (I (@) Tr (1) 7' I, ()7 (1)

Recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems J,(xy)sk = r(xy), k11 = T — Sk



Constrained Optimization Problems

» We now return to the general case of constrained optimization problems:

min f(x) subjectto g(x)=0 and h(x)<0

When f is quadratic, while h, g is linear, this is a quadratic optimization
problem.

» Generally, we will seek to reduce constrained optimization problems to a
series of simpler optimization problems:

» sequential quadratic programming: solve a series of constrained quadratic
optimization problems

> interior point methods: solve a series of more complicated (more
ill-conditioned) unconstrained optimization problems



Lagrangian Duality

» The Lagrangian function with constraints g(x) = 0 and h(x) <0 is
h(x)

L(x,A) = f(x +)\T[ ]
(2 3) = () + 27| 2%

The constrained minima of f(x) must be saddle points of the Lagrangian
function

» The Lagrangian dual problem is an unconstrained optimization problem:

ming L(x,A) ifA=0
maxg(A),  ¢(A) = { e

—0 otherwise

The unconstrained optimality condition Vg¢(A*) = 0, implies

e (3 52]) -0

when A\ = 0, we say the ith constraint is inactive at the minimum point.



Optimality and Complementarity Slackness Condition
Consider the inequality-constrained optimization problem, h(x) < 0,

L(z, ) = f(x) + ATh(z)

» The pair * and A\* are a primal-dual optimal solution =* is feasible, A* > 0,
and strong duality holds, f(x*) = ¢(A*) = L(z*, X*)

> The complementarity slackness condition max (A*, h(x)) = 0 follows since
fl@*) = L(@*,X*) = f(z*) + X*"h(z")

so, since x* is feasible, we have h(x*) > 0 and consequently X} h;(x*) = 0

> Complementarity slackness must be satisfied along with other KKT conditions by
any optimal primal-dual solution if f is differentiable and strong duality holds

» If f is convex, then strong duality holds and further the KKT conditions are not
only necessary but sufficient



Sequential Quadratic Programming

» Sequential quadratic programming (SQP) reduces a nonlinear equality
constrained problem to a sequence of constrained quadratic programs via a
Taylor expansion of the Lagrangian function L;(z, A) = f(z) + Al g(z):

q(xy + 8, Mg + 8) =L s (@, M) + 87 (Vf(z) + Jg(mk))\k) + %STB(mk, Ak)S
+ 8" (Jg(wr)s + g(xs))

where B(xz,A) = Hy(x) + >, \iHg, ()

» SQP ignores the constant term L¢(x, Ax) and minimizes s while treating é
as a Lagrange multiplier:

The above unconstrained quadratic program corresponds to the Lagrangian
form of the constrained quadratic program

1
max s (V f(xy) + JgT(a:k)/\k) + isTB(mk, Ak)s

with constraint Jg(x)s = —g(x).



Interior Point Methods

» Barrier functions provide an effective way of working with inequality
constraints h(x) < 0:

Inverse barrier function:
1
hi(z)

bu(@) = fla)—p Y
=1
Logarithmic barrier function:
$u(x) = f(x) — p ) log(—hi(w))
i=1

in theory with sufficiently small steps we have z;, — x* as p — 0

» Interior point methods additionally incorporate Lagrangian optimization
> can be combined with SQP or alternating minimization
> slack variables with nonnegativity constraints reduce general inequality
constraints to nonnegativity and equality constraints
> optimality conditions for augmented Lagrangian conditions yield linear system
> conditioning of interior point linear systems suffers as ;. decreases



Karush-Kuhn-Tucker (KKT) conditions

Consider the linear-constrained Quadratic program (QP):

. 1
min —z' Hz + 27¢
xeR™

st. Ar=0bCxr>=d
Its Lagrangian function may be used to derive an interior point method
1
L(xz,\,v) = ixTH:L' +2le— AT (Az —b) =T (Cz — d)
The first-order optimality (KKT) conditions are
ViL(z, A\, v) =0

Ar—b=0
Cx—d=0
vI(Cx—d)=0

v=0



Primal-dual Interior Point Method (IPM)

Solve perturbed KKT conditions after introducing slack variables s € R™2

Hr+c— ATN—CTv =0

Az —b=0

Cr—d—-—s=0
SVe=oue

s,v>0

where

V =diag(vi,...,Vm,), S =diag(si,...,sm,), e =[1,..

AT e R™



Interior Point Method (IPM): KKT system

Newton’s method applied to KKT equations results in linear systems

—H AT T [Ax®) rg”
A 0 0 AN | = — | k)
c 0 DW|\Ay® ()

where D\F) = (V(k))_ls(k) is diagonal and changing with iteration k.
These linear systems become ill-conditioned as the interior point method
approaches converges
» the values of D*) = (V(’“))AS(’“) vary greatly in magnitude
» the values of S*) go to zero if inequality constraint is active at the local
minima
» gt the same time, yi(k)s(k) multiply to a fixed value that scales with o

7
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