CS 598 EVS: Tensor Computations Bilinear Algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign

Bilinear Problems

- A number of basic numerical problems can be thought of as bilinear functions associated with particular order 3 tensors
 - matrix multiplication
 - discrete convolution
 - symmetric tensor contractions
- These problems admit nontrivial fast *bilinear algorithms*, which correspond to low-rank CP decompositions of the tensors
 - Strassen's O(n^{log₂(7)}) algorithm for matrix multiplication as well as all other subcubic matrix multiplication
 - The discrete Fourier transform (DFT), Toom-Cook, and Winograd algorithms for convolution are also examples of bilinear algorithms
- We will review fast bilinear algorithms for all of these approaches, using 0-based indexing when discussing convolution

Bilinear Problems

• A bilinear problem for any inputs $a \in \mathbb{R}^n$ and $b \in \mathbb{R}^k$ computes $c \in \mathbb{R}^m$ as defined by a tensor $T \in \mathbb{R}^{m \times n \times k}$

$$c_i = \sum_{j,k} t_{ijk} a_j b_k \quad \Leftrightarrow \quad \boldsymbol{c} = \boldsymbol{f}^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{a}, \boldsymbol{b})$$

- Variants of discrete convolutions (linear convolution, correlation, cyclic convolution) provide simple examples of T
 - Linear convolution

$$t_{ijk} = \begin{cases} 1: k+i-j = 0\\ 0: \textit{otherwise} \end{cases} \implies c_i = \sum_{j,k} t_{ijk} a_j b_k = \sum_{j=\max(0,i-n+1)}^{\min(i,n-1)} a_j b_{i-j} \end{cases}$$

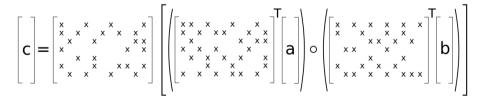
- Correlation obtained by transposing the first and last mode of the linear convolution tensor
- Cyclic convolution has $t_{ijk} = 1$ if and only if $k + i j = 0 \pmod{n}$

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) $\Lambda = (F^{(A)}, F^{(B)}, F^{(C)})$ computes

$$\boldsymbol{c} = \boldsymbol{F}^{(C)}[(\boldsymbol{F}^{(A)T}\boldsymbol{a}) * (\boldsymbol{F}^{(B)T}\boldsymbol{b})],$$

where a and b are inputs and * is the Hadamard (pointwise) product.



Bilinear Algorithms as Tensor Factorizations

• A bilinear algorithm corresponds to a CP tensor decomposition

$$c_{i} = \sum_{r=1}^{R} f_{ir}^{(C)} \left(\sum_{j} f_{jr}^{(A)} a_{j} \right) \left(\sum_{k} f_{kr}^{(B)} b_{k} \right)$$

$$= \sum_{j} \sum_{k} \left(\sum_{r=1}^{R} f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)} \right) a_{j} b_{k}$$

$$= \sum_{j} \sum_{k} t_{ijk} a_{j} b_{k} \quad \textit{where} \quad t_{ijk} = \sum_{r=1}^{R} f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)}$$

- For multiplication of n × n matrices, we can define a matrix multiplication tensor and consider algorithms with various bilinear rank
 - T is $n^2 \times n^2 \times n^2$
 - Classical algorithm has rank $R = n^3$
 - Strassen's algorithm has rank $R \approx n^{\log_2(7)}$

Strassen's Algorithm

Strassen's algorithm
$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

 $M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$
 $M_2 = (A_{21} + A_{22}) \cdot B_{11}$
 $M_3 = A_{11} \cdot (B_{12} - B_{22})$
 $M_4 = A_{22} \cdot (B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12}) \cdot B_{22}$
 $M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$
 $M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$

By performing the nested calls recursively, Strassen's algorithm achieves cost,

$$T(n) = 7T(n/2) + O(n^2) = O(7^{\log_2 n}) = O(n^{\log_2 7})$$

Fast Bilinear Algorithms for Convolution

- Linear convolution corresponds to polynomial multiplication
 - Let a and b be coefficients of degree n 1 polynomial p and degree k 1 polynomial q then

$$(p \cdot q)(x) = \sum_{i=0}^{n+k-1} c_i x^i$$
 where $c_i = \sum_{j=\max(0,i-n+1)}^{\min(i,n-1)} a_j b_{i-j}$

- This view motivates algorithms based on polynomial interpolation
- ▶ The *Toom-Cook* convolution algorithm computes the coefficients of $p \cdot q$ by computing $(p \cdot q)(x_i)$ for $i \in \{1, ..., n + k 1\}$ and interpolates
 - Let V_r be a (n + k 1)-by-r Vandermonde matrix based on the nodes x, so that $V_n a = [p(x_1), \cdots, p(x_{n+k-1})]^T$, etc.
 - Then to evaluate p and q at x and interpolate, we compute

$$\boldsymbol{c} = \boldsymbol{V}_{n+k-1}^{-1}((\boldsymbol{V}_n \boldsymbol{a}) \odot (\boldsymbol{V}_k \boldsymbol{b}))$$

which is a bilinear algorithm

Toom-Cook Convolution and the Fourier Transform

- Vandermonde matrices are ill-conditioned with real nodes, but can be perfectly conditioned with complex nodes
 - The condition number of a Vandermonde matrix with real nodes is exponential in its dimension
 - Choosing the nodes x to be the complex roots of unity gives the discrete Fourier transform (DFT) matrix $D^{(n)}$, $d_{jk}^{(n)} = \omega_n^{jk}$ where $\omega_n = e^{2i\pi/n}$
 - Modulo normalization DFT matrix is orthogonal and symmetric (not Hermitian)
- ▶ The *fast Fourier transform (FFT)* can be used to perform products with the DFT matrix in $O(n \log n)$ time *Taking* $\tilde{D}^{(n)}$ *to be the* $n_1 \times n_2$ (*for* $n = n_1 n_2$) *leading minor of* D_n *we can compute* $y = D^{(n)}x$ *via the split-radix-* n_1 *FFT,*

$$y_{k} = \sum_{i=0}^{n-1} x_{i} \omega_{n}^{ik} = \sum_{i=0}^{n/2-1} x_{2i} \omega_{n/2}^{ik} + \omega_{n}^{k} \sum_{i=0}^{n/2-1} x_{2i+1} \omega_{n/2}^{ik}$$
$$y_{(kn_{1}+t)} = \sum_{s=0}^{n_{1}-1} \omega_{n_{1}}^{st} \left[\omega_{n}^{sk} \sum_{i=0}^{n_{2}-1} x_{(in_{1}+s)} \omega_{n_{2}}^{ik} \right] \Leftrightarrow \boldsymbol{Y} = ([\tilde{\boldsymbol{D}}^{(n)} \odot (\boldsymbol{D}^{(n_{2})} \boldsymbol{A})] \boldsymbol{D}^{(n_{1})})^{T}$$

Cyclic Convolution via DFT

- For linear convolution $D^{(n+k-1)}$ is used, for cyclic convolution $D^{(n)}$ suffices
 - Expanding the bilinear algorithm, $m{y} = m{D}^{(n)^{-1}} ig((m{D}^{(n)} m{f}) \odot (m{D}^{(n)} m{g}) ig)$, we obtain

$$y_k = \frac{1}{n} \sum_{i=0}^{n-1} \omega_{(n)}^{-ki} \left(\sum_{j=0}^{n-1} \omega_{(n)}^{ij} f_j \right) \left(\sum_{t=0}^{n-1} \omega_{(n)}^{it} g_t \right) = \frac{1}{n} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{t=0}^{n-1} \omega_{(n)}^{(j+t-k)i} f_j g_t$$

It suffices to observe that for any fixed u = j + t − k ≠ 0 or ≠ n, the outer summation yields a zero result, since the geometric sum simplifies to

$$\sum_{i=0}^{n-1} \omega_{(n)}^{ui} = (1 - (\omega_{(n)}^u)^n) / (1 - \omega_{(n)}^u) = 0$$

- The DFT also arises in the eigendecomposition of a circulant matrix
 - The cyclic convolution is defined by the matrix-vector product $y=C_{\langle a
 angle }b$ where

$$oldsymbol{C}_{\langleoldsymbol{a}
angle} = egin{bmatrix} a_0 & \cdots & a_1 \ dots & \ddots & dots \ a_{n-1} & \cdots & a_0 \end{bmatrix}$$

• The eigenvalue decomposition of this matrix is $C_{\langle a \rangle} = {D^{(n)}}^{-1} \operatorname{diag}(D^{(n)}a) D^{(n)}$

Winograd's Algorithm for Convolution

- The DFT/FFT requires complex arithmetic, motivating alternatives such as the more general Winograd family of algorithms
 - In Winograd's convolution algorithm, the remainder of the product v = pq is computed using k distinct polynomial divisors, m⁽ⁱ⁾, whose product is the polynomial M with deg(M) > deg(v)
 - The k polynomial divisors, $m^{(1)}, m^{(2)}, \cdots, m^{(k)}$ must be coprime
 - From the k remainders, $u^{(i)} = pq \mod m^{(i)}$ the remainder $v = pq \mod M$ is recovered via the Chinese remainder theorem
 - The theorem leverages Bézout's identity, which states that there exist polynomials $n^{(i)}$ and $N^{(i)}$ such that, for $M^{(i)} = M/m^{(i)}$,

 $M^{(i)}N^{(i)} + m^{(i)}n^{(i)} = 1$

which allow us to construct v

$$v = \left(\sum_{i=1}^{k} u^{(i)} M^{(i)} N^{(i)}\right) \mod M$$

• Toom-Cook algorithms are special cases of Winograd's convolution algorithm, where the polynomial divisors are $m^{(i)}(x) = x - \chi_i$, where χ_i are nodes

- Winograd's convolution algorithm can be written as a bilinear algorithm by defining appropriate linear transformations
 - Linear convolution corresponds to a product with a Toeplitz matrix, $c = T_{\langle a,k \rangle} b$ where $T_{\langle a,k \rangle} \in \mathbb{R}^{n+k-1 \times k}$ is

$$oldsymbol{T}_{\langleoldsymbol{a},k
angle}=egin{bmatrix} a_0\dots\ dots\ a_{n-1}\ & a_0\ & dots\ & \dots\ & \$$

• Let $X_{\langle m,d \rangle} \in \mathbb{C}^{\deg(m) \times (d+1)}$ be a matrix that computes the coefficients of $\rho = p \pmod{m}$ when multiplied by coefficients of degree d polynomial $p, \rho = X_{\langle m,d \rangle} p$

$$oldsymbol{X}_{\langle m,d
angle} = egin{bmatrix} oldsymbol{I} & -oldsymbol{L}oldsymbol{U}^{-1} \end{bmatrix}$$

where I is an identity matrix of dimension deg(m), L contains the top deg(m) rows of $T_{\langle m, d-deg(m)+1 \rangle}$, and U contains the bottom d + 1 rows of $T_{\langle m, d-deg(m)+1 \rangle}$

• Given an operator $X_{\langle m,d \rangle} \in \mathbb{C}^{\deg(m) \times (d+1)}$ to compute coefficients of $\rho = p \pmod{m}$, we can efficiently compute

 $pq \bmod m = (p \bmod m)(q \bmod m) \bmod m,$ $\boldsymbol{X}_{\langle m, deg(p) + deg(q) - 1 \rangle} (\boldsymbol{p} * \boldsymbol{q}) = \boldsymbol{X}_{\langle m, 2deg(m) - 1 \rangle} ((\boldsymbol{X}_{\langle m, deg(p) \rangle} \boldsymbol{p}) * (\boldsymbol{X}_{\langle m, deg(q) \rangle} \boldsymbol{q}))$

• Further, given a bilinear algorithm (A, B, C) to compute linear convolution of two *m*-dimensional vectors, we can obtain a bilinear algorithm $(X_{\langle m, deg(p) \rangle}^T A, X_{\langle m, deg(q) \rangle}^T B, X_{\langle m, 2deg(m)-1 \rangle}C)$ to compute $\rho = pq \mod m$, since

$$\boldsymbol{\rho} = \boldsymbol{X}_{\langle m, 2 \textit{deg}(m) - 1 \rangle} \boldsymbol{C} \big((\boldsymbol{A}^T \boldsymbol{X}_{\langle m, \textit{deg}(p) \rangle} \boldsymbol{p}) \odot (\boldsymbol{B}^T \boldsymbol{X}_{\langle m, \textit{deg}(q) \rangle} \boldsymbol{q}) \big).$$

- Winograd's convolution algorithm effectively merges smaller bilinear algorithms for linear convolution
 - Given $M = \prod_{i=1}^{k} m^{(i)}$ where deg(M) = n + r 1 and $m^{(1)}, \dots, m^{(k)}$ are coprime, as well as $(\mathbf{A}^{(i)}, \mathbf{B}^{(i)}, \mathbf{C}^{(i)})$ for $i \in \{1, \dots, k\}$, where $(\mathbf{A}^{(i)}, \mathbf{B}^{(i)}, \mathbf{C}^{(i)})$ is a bilinear algorithm for linear convolution of vectors of dimension $deg(m^{(i)})$
 - Winograd's convolution algorithm yields a bilinear algorithm (A, B, C) for computing linear convolution with vectors of dimension r and n, where

where $\tilde{C}^{(i)} = X_{\langle M, \deg(M) + \deg(m^{(i)}) - 2 \rangle} T_{\langle e^{(i)}, \deg(m^{(i)}) \rangle} X_{\langle m^{(i)}, 2\deg(m^{(i)}) - 1 \rangle} C^{(i)}$ and $e^{(i)}$ are coefficients of polynomial $e^{(i)} = M^{(i)} N^{(i)} \mod M$.

- \blacktriangleright A missing piece of the above formulation is how to realize Bézout's identity to compute $N^{(i)}$ and $e^{(i)}$
 - $e^{(i)} = M^{(i)}N^{(i)} \mod M$ so it suffices to compute $n^{(i)}$ and $N^{(i)}$ then apply previously mentioned linear transformations
 - The extended Euclidian algorithm can be used for this task, or one can solve a linear system
 - The coefficients of polynomials \hat{N} and \hat{n} satisfying $\hat{M}\hat{N} + \hat{m}\hat{n} = 1$ for coprime \hat{M} and \hat{m} are

$$\begin{bmatrix} \hat{N} \\ \hat{n} \end{bmatrix} = \begin{bmatrix} T_{\langle \hat{M}, deg(\hat{m}) - 1 \rangle} & T_{\langle \hat{m}, deg(\hat{M}) - 1 \rangle} \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Nested Bilinear Algorithms for Convolution

- 2D convolution is equivalent to nested 1D convolution
 - Given $F \in \mathbb{R}^{r \times r}$ and $G \in \mathbb{R}^{n \times n}$, the 2D linear convolution Y = F * G with $Y \in \mathbb{R}^{(n+r-1) \times (n+r-1)}$ gives

$$y_{ab} = \sum_{i=\max(0,a-n+1)}^{\min(a,r-1)} \sum_{j=\max(0,b-n+1)}^{\min(b,r-1)} f_{ij}g_{a-i,b-j}$$

- ▶ 2D bilinear problem is defined by tensor T^(2D) = T ⊗ T where ⊗ is the natural generalization of Kronecker product to tensors
- 1D convolution can be reduced to 2D convolution with some work
 - For linear convolution, with vectors of dimension n = st can reduce to $s \times t$ 2D convolution to obtain rank (2s 1)(2t 1) bilinear algorithm via overlap-add technique, which computes partial sums of the result of the 2D convolution
 - For cyclic convolution, Agarwal-Cooley algorithm uses the Chinese remainder theorem for integers to decouple dimension n = st convolution to s × t 2D cyclic convolution via permutations
- For more details on the above derivations and a broader survey of convolution algorithms, see https://arxiv.org/abs/1910.13367

Symmetric Tensor Contractions

- Bilinear algorithms can also be used to accelerate tensor contractions for tensors with symmetry
 - Recall a symmetric tensor is defined by e.g., $t_{ijk} = t_{ikj} = t_{jki} = t_{jik} = t_{kji}$
 - Tensors can also have skew-symmetry (also known as antisymmetry, permutations have +/- signs), partial symmetry (only some modes are permutable), or group symmetry (blocks are zero if indices satisfy modular equation)
 - The simplest example of a symmetric tensor contraction is

 $\boldsymbol{y} = \boldsymbol{A} \boldsymbol{x}$ where $\boldsymbol{A} = \boldsymbol{A}^T$

it is not obvious how to leverage symmetry to reduce cost of this contraction

- Bilinear algorithms for symmetric tensor contractions exist with lower rank than their nonsymmetric counterparts
 - Symmetric matrix-vector product can be done with n(n+1)/2 multiplications
 - Cost of contractions of partially symmetric tensors reduced via this technique

Symmetric Matrix Vector Product

- Consider computing $\boldsymbol{c} = \boldsymbol{A} \boldsymbol{b}$ with $\boldsymbol{A} = \boldsymbol{A}^T$
 - Typically requires n^2 multiplications since $a_{ij}b_j \neq a_{ji}b_i$ and $n^2 n$ additions
 - Instead can compute

$$v_i = \sum_{j=1}^{i-1} u_{ij} + \sum_{j=i+1}^{n} u_{ji}$$
 where $u_{ij} = a_{ij}(b_i + b_j)$

using n(n-1)/2 multiplications (since we only need u_{ij} for i > j) and about $3n^2/2$ additions, then

$$c_i = (2a_{ii} - \sum_{j=1}^n a_{ij})b_i + v_i$$

using n more multiplications and n^2 additions

- Beneficial when multiplying elements of A and b costs more than addition
- This technique yields a bilinear algorithm with rank n(n+1)/2

Partially-Symmetric Tensor Times Matrix (TTM)

- ► Can use symmetric mat-vec algorithm to accelerate TTM with partially symmetric tensor from $2n^4$ operations to $(3/2)n^4 + O(n^3)$
 - Given $A \in \mathbb{R}^{n \times n \times n}$ with symmetry $a_{ijk} = a_{jik}$ and $B \in \mathbb{R}^{n \times n}$, we compute

$$c_{ikl} = \sum_{j} a_{ijk} b_{jl}$$

• We can think of this as a set of symmetric matrix-vector products

$$oldsymbol{c}^{(k,l)} = oldsymbol{A}^{(k)}oldsymbol{b}^{(l)}$$

and apply the fast bilinear algorithm

$$v_{ikl} = \sum_{j=1}^{i-1} u_{ijkl} + \sum_{j=i+1}^{n} u_{ijkl} \text{ where } u_{ijkl} = a_{ijk}(b_{il} + b_{jl})$$
$$c_{ikl} = (2a_{iik} - \sum_{j=1}^{n} a_{ijk})b_{il} + v_{ikl}$$

using about $n^4/2$ multiplications and $n^4 + O(n^3)$ additions (need only n^3 distinct sums of elements of B) to compute \mathcal{V} , then $O(n^3)$ operations to get \mathcal{C} from \mathcal{V}

Computing Symmetric Matrices

- Output symmetry can also be used to reduced cost, for example when computing a symmetrized outer product C = ab^T + ba^T
 - $C = C^T$ so suffices to compute c_{ij} for $i \ge j$, $c_{ij} = a_i b_j + a_j b_i$
 - To reduce number of products by a factor of 2, can instead compute

$$c_{ij} = (a_i + a_j)(b_i + b_j) - v_i - v_j$$
 where $v_i = a_i b_i$

- To symmetrize product of two symmetric matrices, can compute anticommutator, C = AB + BA
 - Each matrix can be represented with n(n + 1)/2 elements, but products all n³ products a_{ik}b_{kj} are distinct (so typically cost is 2n³)
 - Cost can be reduced to $n^3/6 + O(n^2)$ products by amortizing terms in

$$c_{ij} = \sum_{k} (a_{ij} + a_{ik} + a_{jk})(b_{ij} + b_{ik} + b_{jk}) - na_{ij}b_{ij} - \left(\sum_{k} a_{ik} + a_{jk}\right)b_{ij} - a_{ij}\left(\sum_{k} b_{ik} + b_{jk}\right) - \sum_{k} a_{ik}b_{ik} - \sum_{k} a_{jk}b_{jk}$$

General Symmetric Tensor Contractions

We can now consider the cost of a symmetrized contraction over v indices of symmetric tensors A (of order s + v) and B (of order v + t)

$$c_{i'_1\dots i'_s, j'_1\dots j'_t} = \sum_{\{i_1\dots i_s, j_1\dots j_t\}\in \Pi(i'_1\dots i'_s, j'_1\dots j'_t)} \sum_{k_1\dots k_v} a_{i_1\dots i_s, k_1\dots k_v} b_{k_1\dots k_v, j_1\dots j_t}$$

where Π gives all distinct partitions of the s + t indices into two subsets of size s and t, e.g.,

$$\Pi(i_1, j_1 j_2) = \{\{i_1, j_1 j_2\}, \{j_1, i_1 j_2\}, \{j_2, i_1 j_1\}\}$$

- Such tensor contractions can be done using $n^{s+t+v}/(s+t+v)! + O(n^{s+t+v-1})$ products
 - General algorithm looks similar to anticommutator matrix product
 - After multiplying subsets of operands, unneeded terms are all computable with $O(n^{s+t+v-1})$ products
 - These approaches correspond to bilinear algorithms of this rank

Summary of Bilinear Algorithms

We reviewed bilinear algorithms for 3 problems, which may all be viewed as special cases of tensor contractions

- fast matrix multiplication algorithms such as Strassen's, reduce the asymptotic scaling of tensor contractions, as these are isomorphic to mat.-mul.
- fast convolution algorithms such as Toom-Cook and DFT/FFT, reduce even more significantly the asymptotic cost of tensor contractions with tensors that have Toeplitz/Hankel/circulant structure, as these are equivalent to convolutions
- symmetry-preserving tensor contractions algorithms reduce cost of tensor contractions by a factor that increases factorially with tensor order, if the tensors involved are symmetric

Summary of Nested Bilinear Algorithms

For the tensor $T^{(n)}$ defining any of the 3 problems for input size $n, T^{(n)} \otimes T^{(n)}$ defines a problem for larger inputs

- in each case, we may obtain a bilinear algorithm of rank R^2 for $\mathcal{T}^{(n)} \otimes \mathcal{T}^{(n)}$ from bilinear algorithms of rank R for $\mathcal{T}^{(n)}$ via Kronecker products of the factors
- for matrix multiplication with dimension n, $\mathcal{T}^{(n)} \otimes \mathcal{T}^{(n)}$ defines the tensor for multiplication of matrices with dimension n^2
- For convolution of vectors with dimension n, T⁽ⁿ⁾ ⊗ T⁽ⁿ⁾ defines a 2D convolution (to which a 1D convolution of size equal to or within a constant of n² can be reduced)
- ▶ for symmetric tensor contractions, T⁽ⁿ⁾ ⊗ T⁽ⁿ⁾ defines the problem of contracting two partially symmetric tensors (with two groups of symmetric modes)