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CP Decomposition Rank
§ The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition

expresses an order d tensor in terms of d factor matrices
§ For T P Rn1ˆ¨¨¨ˆnd , a rank R CP decomposition is defined by matrices
U piq P RsiˆR so that

ti1...id “
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§ The CP decomposition is also often denoted by

T “ rrU p1q, . . . ,U pdqss

§ First proposed by Hitchcock in 1927
§ Given a tensor, the smallest R for which it has a CP decomposition is the tensor

rank, also sometimes referred to as the CP rank or canonical rank
§ Finding the CP rank and associated decomposition enables automatic derivation

of bilinear algorithms among other applications reviewed later in this lecture,
which mostly follows T. Kolda and B. Bader ”Tensor Decompositions and
Applications”, SIAM Review 2009.



Tensor Rank Properties
§ Tensor rank does not satisfy many of the properties of matrix rank

§ Rank of a real-valued tensor can be di�erent over the complex field, e.g., for
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which is a perfectly conditioned tensor, the rank over R is 3 but over C it is 2,
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§ The maximal possible rank of tensors of particular dimensions is often unequal
to the typical tensor rank, which is any rank for which the set of tensors of a
given size with that rank has positive volume

§ 2ˆ 2ˆ 2 tensors have typical ranks 2 (79%) and 3 (21%) over R, and typical
rank 2 over C



Typical Rank and Generic Rank

§ When there is only a single typical tensor rank, it is the generic rank
§ For decomposition over C, tensors have a single generic rank
§ If we restrict to symmetric tensors of order d and dimension n, the generic rank

over C is
R “

Rˆ

n` d´ 1

d

˙

{n

V

except when pd, nq P tp3, 5q, p4, 3q, p4, 4q, p4, 5qu in which cases it should be
increased by one

§ This rank bound makes sense, as the total amount of information in a single
factor matrix is nR «

`

n`d´1
d

˘

, which matches the number of unique entries in
the symmetric tensor

§ For maximal rank of an n1 ˆ n2 ˆ n3 tensor, the maximal rank is bounded
(weakly) by R ď minpn1n2, n1n3, n2n3q, which follows by the same intuition



Uniqueness Su�cient Conditions
§ Unlike the low-rank matrix case, the CP decomposition can be unique

§ In the matrix case, given A “ UV T , for any invertible M we can obtain a new
factorization A “ UMpVM´1qT

§ In CP decomposition, the indeterminacy is generally limited to permutation of
the R rank-1 factors and scaling of their components

§ Modulo permutation and scaling, strong conditions exist on uniqueness of the
CP decomposition

§ Define the k-rank of a matrix as the maximum value of k such that any k
columns of the matrix are linearly independent

§ For an order 3 tensor with CP decomposition rrA,B,Css where the factor
matrices have k-ranks kA, kB , and kC , a su�cient condition for uniqueness is

kA ` kB ` kC ě 2R` 2

§ For order d tensors whose CP decomposition is composed of matrices with has k
ranks k1, . . . , kd, the su�cient condition is

d
ÿ

i“1

ki ě 2R` pd´ 1q



Uniqueness Necessary Conditions

§ Necessary conditions for uniqueness of the CP decomposition also exist
§ A simple necessary condition for uniqueness is

min
lPt1,...,du

´

d
ź

i“1,i‰l

rankpU piqq
¯

ě R

§ This condition stems from the more general restriction that

min
lPt1,...,du

rank
´ d

ä

i“1,i‰l

U piq
¯

ě R

§ When one of the d Khatri-Rao products is rank deficient, multiple (infinite)
choices of the lth factor matrices must bring the residual to zero



Degeneracy
§ The best rank-k approximation may not exist, a problem known as

degeneracy of a tensor
§ Consider a rank 3 tensor

T “ a1 b b1 b c2 ` a1 b b2 b c1 ` a2 b b1 b c1

where the factor matrices are defined to be orthogonal
§ The tensor can be approximated arbitrarily closely by

Wpαq
“ αpa1 `

1

α
a2q b pb1 `

1

α
b2q b pc1 `

1

α
c2q ´ αa1 b b1 b c1

in particular
lim
αÑ8

}Wpαq
´ T } “ 0

§ Consequently, the best rank-2 approximation does not exist for this tensor, as in
the limit Wpαq converges to an order 3 tensor



Border Rank

§ Degeneracy motivates an approximate notion of rank, namely border rank
§ The border rank of a tensor T is defined as the smallest R such that, for any
ε ą 0, there exists a rank R tensor W such that

}T ´W} ă ε

§ The border rank is always less than the rank of a tensor, but can also be smaller
§ The concept of border rank has been intensively used to find fast bilinear

algorithms for matrix multiplication
§ The border rank and rank of the 4ˆ 4ˆ 4 multiplication tensor are both 7,

yielding Strassen’s algorithm
§ For the 9ˆ 9ˆ 9 tensor defining multiplication of 3ˆ 3 matrices, determining

rank and border rank is an open problem, the rank is between 19 and 23, while
the border rank is between 14 and 21



Approximation by CP Decomposition
§ Approximation via CP decomposition is a nonlinear optimization problem

§ Given order d tensor T with all dimensions equal to n, the rank-R CP
approximation problem can be written as

min
Up1q,...,UpnqPRnˆR

1

2
}T ´ rrU p1q, . . . ,U pdqss}2F

loooooooooooooooomoooooooooooooooon

φpUp1q,...,Updqq

§ The gradient of this objective function is

∇φ “
“

dφ{dU p1q . . . dφ{dU pdq
‰

§ Each component of the gradient has the form

dφ

dU piq
pU p1q, . . . ,U pdqq “ U piq ˚dj“1,j‰i U

pjqTU pjq ´ T piq

d
ä

j“1,j‰i

U pjq

looooooooomooooooooon

MTTKRP

§ Unless R is very large, computing dφ
dUpiq

pU p1q, . . . ,U pdqq is not much cheaper
than minimizing φ w.r.t. U piq by solving for U piq in dφ

dUpiq
pU p1q, . . . ,U pdqq “ 0



Alternating Least Squares Algorithm
§ The standard approach for finding an approximate or exact CP

decomposition of a tensor is the alternating least squares (ALS) algorithm
§ Consider rank R decomposition of a tensor T P Rnˆnˆn over R
§ A sweep takes as input rrU pkq,V pkq,W pkqss solves 3 quadratic optimization

problems to obtain rrU pk`1q,V pk`1q,W pk`1qss, updating each factor matrix in
sequence, typically via the normal equations:

pV pkq
T
V pkq ˚W pkqTW pkqqU pk`1q “ Tp1qpV

pkq dW pkqq

pU pk`1qTU pk`1q ˚W pkqTW pkqqV pk`1q “ Tp2qpU
pk`1q dW pkqq

pU pk`1qTU pk`1q ˚ V pk`1qTV pk`1qqW pk`1q “ Tp3qpU
pk`1q d V pk`1qq

§ Residual decreases monotonically, since the subproblems in each subset of nR
variables are quadratic

§ Forming the linear equations has cost OpdnR2q while forming the
right-hand-sides requires an MTTKRP with cost OpndRq



Properties of Alternating Least Squares for CP

§ CP-ALS achieves linear local convergence to local minima of our objective φ
§ this follows from the equivalence of the optimality conditions (vanishing

gradient) and the ALS update rule
§ no global convergence guarantees are available, and in practice algorithm

convergence can stagnate, typically due to the factor matrix iterates becoming
ill-conditioned

§ CP-ALS guarantees monotonic decrease in residual
§ the exact minimizer is found for each quadratic subproblem, which cannot be

worse than the previous choice
§ the equations for each subproblem are formed by a Khatri-Rao product,

which makes subproblems amenable to fast approximate methods



Alternating Least Squares for Tucker Decomposition
§ For Tucker decomposition, an analogous optimization procedure to ALS is

referred to as high-order orthogonal iteration (HOOI)
§ Each component of the derivative of the Tucker approximation objective

function with respect to the product of a factor matrix and the core tensor is a
TTMc (as opposed to MTTKRP in the CP case)

ψpZ,U ,V ,W q “
1

2
ptijk ´

ÿ

pqr

zpqruipvjqwkrq
2

dψ

dpZ ˆ1 Uq
pZ,U ,V ,W q “

ÿ

j,k

tijkvjqwkr ´
ÿ

pq1r1

zpqruip p
ÿ

j

vjq1vjqq

looooomooooon

δpq,q1q

p
ÿ

k

wkr1wkrq

loooooomoooooon

δpr,r1q

§ Consequently, we can find the minimizing Z ˆ1 U by SVD of the mode-1
unfolding of the TTMC T ˆ2 V

T ˆ3 W
T , which is a sˆR2 matrix

§ Optimizing for a single factor matrix in this way costs OpsdR` sRdq
§ A sweep of HOOI requires forming N such TTMcs and computing their SVDs



Dimension Trees for ALS
§ The cost of ALS can be reduced by amortizing computation common terms

§ The cost of ALS is typically dominated by MTTKRPs, d of which are computed for
each sweep, for d “ 3,

Tp1qpV
pkq dW pkqq,Tp2qpU

pk`1q dW pkqq,Tp3qpU
pk`1q d V pk`1qq

§ Note that given Z “ T ˆ3 W
pkqT , we can compute the first two MTTKRPs with

Ops2Rq cost, since
ÿ

j,l

tijlv
pkq
jr w

pkq
lr “

ÿ

j

zijrv
pkq
jr and

ÿ

j,l

tijlu
pk`1q
ir w

pkq
lr “

ÿ

i

zijru
pk`1q
ir

§ In general, we can reuse a single TTM to compute the next d´ 1 sets of
right-hand-sides (MTTKRPs) in ALS (in this sweep or the next sweep)

§ The amortized cost of each ALS sweep (assuming Strassen-like
matrix-multiplication algorithms are not used) is then given by
2d
d´1s

dR`Opdsd´1Rq `OpdR3q where the final term comes from Cholesky
factorization of the matrices Gpiq “ ˚dj“1,j‰iU

pjqTU pjq



Fast Residual Norm Calculation

§ Calculating the norm of the residual has cost 2dsdR, but can be done more
cheaply within ALS

§ We can expand the square of the residual norm as follows

}T ´rrU ,V ,W ss}2F “ }T }2F´
ÿ

ijkr

tijkuirvjrwkr`
ÿ

rs

p
ÿ

i

uiruisqp
ÿ

j

vjrvjsqp
ÿ

k

wkrwksq

§ The first term does not change across ALS sweeps, so it su�ces to compute it
once

§ The second term can be obtained cheaply from any MTTKRP with d´ 1 of the
factor matrices

§ The third term can be computed from Gram matrices that are needed for ALS
anyway



Pairwise Perturbation Algorithm
§ A route to further reducing the cost of ALS is to perform it approximately via

pairwise perturbation
§ ALS convergence can be slow with factor matrices changing little at every

iteration
§ In such cases, can leverage perturbative approximation to compute each

MTTKRP approximately using old intermediates
§ Given order 3 tensor T can compute intermediates

Zp1q
“ T ˆ1 U

pkqT ,Zp2q
“ T ˆ2 V

pkqT ,Zp3q
“ T ˆ3 W

pkqT

and approximate for subsequent iteration k1 ą k so long as
}U pk

1
q ´U pkq}F , }V

pk1q ´ V pkq}F , }W
pk1q ´W pkq}F ă ε,

ÿ

j,l

tijlv
pk1q
jr w

pk1q
lr “

ÿ

j

z
p3q
ijrv

pk1q
jr `

ÿ

j,l

tijlv
pk1q
jr pw

pk1q
lr ´ w

pkq
lr q «

ÿ

j

z
p3q
ijrv

pk1q
jr

§ For general order d tensors, each approximated sweep for k1 ą k has cost
dpd´ 1qs2R`OpdR3q

§ For Tucker, dimension trees and pairwise perturbation work similarly



Pairwise Perturbation Second Order Correction

§ When approximating a tensor using CP, the partially converged CP factors
can sometimes be used in place of the tensor to accelerate cost

§ An example of this idea is the second order correction to pairwise perturbation
§ The truncated term in the pairwise perturbation algorithm can be approximated

by approximating the tensor T with its current approximate CP decomposition
ÿ

j,l

tijlv
pk1q
jr pw

pk1q
lr ´ w

pkq
lr q «

ÿ

j,l,q

u
pk1q
iq v

pk1q
jq w

pk1q
lq v

pk1q
jr pw

pk1q
lr ´ w

pkq
lr q

§ These contractions can be evaluated with cost OpsR2q

ÿ

j,l,q

u
pk1q
iq v

pk1q
jq w

pk1q
lq v

pk1q
jr pw

pk1q
lr ´w

pkq
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ÿ

q

u
pk1q
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ÿ

j

v
pk1q
jq v

pk1q
jr qp

ÿ

l

w
pk1q
lq pw

pk1q
lr ´w

pkq
lr qq



Gauss-Newton Algorithm
§ ALS generally achieves linear convergence, while Newton-based methods

can converge quadratically
§ Derive these by casting CP as a nonlinear least squares problem,

φpxq “
1

2
}y ´ fpxq
loooomoooon

rpxq

}2

§ Newton’s method computes xpk`1q “ xpkq ´Hφpxq
´1∇φpxq

§ For nonlinear least squares problems, the gradient and Hessian are

∇φpxq “ JTr pxqrpxq,

Hφpxq “ J
T
r pxqJrpxq `

ÿ

i

ripxqHripxq

§ The Gauss-Newton method approximates Hφpxq « J
T
r pxqJrpxq, so

xpk`1q “ xpkq ´ spkq, spkq “ pJTr px
pkqqJrpx

pkqqq´1JTr px
pkqqrpxpkqq,

Jrpx
pkqqspkq – rpxpkqq



Gauss-Newton for CP Decomposition
§ CP decomposition for order d “ 3 tensors (d ą 3 is similar) minimizes

φpU p1q,U p2q,U p3qq “
1

2

ÿ

ijk

`

tijk ´
R
ÿ

r“1

u
p1q
ir u

p2q
jr u

p3q
kr

˘2

§ The Gauss-Newton approximate Hessian is dnRˆ dnR,

H “

»

—

–

Hp1,1q ¨ ¨ ¨ Hp1,dq

...
. . .

...
Hpd,1q ¨ ¨ ¨ Hpd,dq

fi

ffi

fl

, where Hpq,qq “ Gpn,nq b I

while for q ‰ p, h
pq,pq
krlz “ u

pqq
kz u

ppq
lr g

pq,pq
rz ,

where in both cases gpn,pqrz “

d
ź

m“1,m‰q,p

˜

ÿ

i

u
pmq
ir u

pmq
iz

¸



Gauss-Newton for CP Decomposition
§ A step of Gauss-Newton requires solving a linear system with H

§ Cholesky of H requires Opd2n2R2q memory and cost Opd3n3R3q

§ Matrix-vector product with H can be computed with cost Opd2nR2q

§ Can use CG method with implicit matrix-vector product1

§ Can formulate product u “Hv using tensor contractions each with cost
OpnR2q

u = []
for q in range(d):

u.append(zeros((n,R)))
for p in range(d):

if q == p:
u[q] += einsum("rz,kz->kr",G[q,p],v[p])

else:
u[q] += einsum("kz,lr,rz,lz->kr", \

U[q],U[p],G[q,p],v[p])

1P. Tichavsky, A. H. Phan, and A. Cichocki, 2013



Matrix Sketching
Randomized methods provide accurate approximate solutions to linear least
squares problems, which can be applied to accelerate ALS, as well as more basic
problems

§ Consider a linear least squares problem with A P Rmˆn

Ax – b

§ We seek to find a sketch matrix S P Rsˆm, s ă m so as to obtain an
approximate solution x̂ « x via

SAx̂ – Sb

§ We choose S from a random distribution so that SA is e�cient to compute,
and with high-probability, the residual is not much larger than optimal,

}Ax̂´ b}2 ´ }Ax´ b}2
}Ax´ b}2

ď ε



Random Projections

Accuracy of sketching techniques is theoretically characterized by statistical
analysis

§ To ascertain accuracy of sketching for matrix/vector products and linear
least squares, we want to bound error of xSu,Svy relative to xu,vy for some
set of pairs u,v

§ Generally, its easy to enforce that the result computed in expectation agrees
with the exact solution

§ To bound error, it then su�ces to bound the variance of the random variable,
e.g., via Cherno� bounds



Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss lemma is a powerful tool for obtaining error bounds
in a projected vector space

SAx̂ – Sb

§ For u1, . . . ,un if S P Rkˆd is elementwise Gaussian-random, then if
k ě 9 log n{pε2 ´ ε3q, then with probability 1/2, all projected distances
}ui ´ uj}2 are preserved to within a relative error of ε

§ Since the squared distance }ui ´ uj}
2
2 “ }ui}

2
2 ` }uj}

2
2 ´ 2xui,ujy and the

projected vector norms are also preserved accurately w.h.p., it follows that
we can also sketch xui,ujy accurately

§ For a more comprehensive review of these results and derivations, see the
following notes by Michael Mahoney https://arxiv.org/pdf/1608.04481.pdf

https://arxiv.org/pdf/1608.04481.pdf


Matrix Sketching

The best choice of sketch matrix depends on the desired accuracy and the
structure of A

§ the matrix A may be sparse or structured, e.g., for ALS A is a Khatri-Rao
product, while for HOOI, A is a Kronecker product of orthogonal matrices

§ for dense matrices, random Gaussian sketches or sketches that can be
applied with FFT or FFT-like algorithms are fastest

§ for sparse matrices, ideally we wish to sample the rows of A or at least
minimally mix them, for which we need a sparse S

§ the sketched solve can also be applied as a preconditioner in order to
improve accuracy



Matrix Sketching via Sampling
Uniform sampling of rows is insu�cient to obtain good accuracy in general

§ Consider an A with a single row that is orthogonal to the rest, if it is not
sampled, all of x spanned by this row will be missed in x̂

§ The component of the right-hand-side in the span of the columns of A “ QR
is QQTb

§ After sketching, we reduce the row space, and can capture less of the
right-hand side SQpSQq:Sb

§ The largest components of QQTb will depend on the largest row-norms of Q
Leverage score sampling provides better accuracy guarantees

§ The leverage scores of A are given by li “ }qi}22 where qi is the ith row of Q
§ We can define S to sample the rows of A with probability li{n, since

ř

i li “ n

§ With this choice, a sample size of s “ Opn{ε2q su�ces to get within 1` ε of
the optimal residual

§ While reducing row dimension from m to Opn{ε2q is beneficial for small n,
computing leverage scores is expensive (requires QR factorization)



Mixing Techniques
To circumvent leverage score sampling, we can mix rows randomly

§ Choosing elements of S from a Gaussian distribution, results in intermixing of
rows of Q

§ In e�ect, this corresponds to uniform sampling with close-to-uniform
leverage scores

§ The resulting sample complexity is as good as leverage-score-based sampling
Instead of choosing elements of S randomly, pseudo-random distributions allow
S to be applied more rapidly

§ Choose S “ PFD whereD is a random diagonal sign matrix, F is the DFT or
Hadamard transform, and P performs uniform-random sampling

§ Application of orthogonal matrix FD results in a random intermixing of rows,
does not modify solution x

§ P performs sampling of a matrix with close-to-uniform leverage scores
§ Same sample size complexity as Gaussian mixing and leverage score

sampling



Approximate CP ALS using Random Sampling
§ Another approach to approximating ALS is to sample the least-squares

equations2

§ Recall, that in the least squares view, in the first step of ALS we seek to optimize
U in T « rrU ,V ,W ss, yielding

pV dW qUT – T Tp1q

§ Instead, we can sample S of the equations and solve

SpV dW qUT – ST Tp1q

where the rows of S P RSˆn2 are sampled uniformly (with replacement) from the
identity matrix

§ This approach yields cost OpS ˆR2 ` n2SRq per iteration, as opposed to the
usual Opn3R`R3q

§ An variation of this method is to mix the equations, e.g., by picking
S “ S1pFD1 b FD2qD where D1 and D2 are random diagonal sign matrices,
F is the FFT matrix, and S1 is a sampling matrix as before

§ The FFTs can then be applied to the tensor as a preprocessing step
2C. Battaglino, G. Ballard, T. G. Kolda, 2018



Tensor Completion
§ The tensor completion problem seeks to build a model (e.g., CP

decomposition) for a partially-observed tensor
§ Completion di�ers from decomposition of a sparse tensor with zeros for entries

that are unobserved, as the CP decomposition would be fitting the zeros, which
we do not want

§ For an order three tensor T P Rnˆnˆn, given a set of observed entries tijk for
pi, j, kq P Ω, we seek to minimize

fpU ,V ,W q “
ÿ

pi,j,kqPΩ

ptijk ´
ÿ

r

uirvjrwkrq
2 ` λ2p}U}22 ` }V }

2
2 ` }W }22q

§ The problem was partially popularized by the Netflix prize collaborative
filtering problem

§ This problem involved building a model for predicting user ratings of movies,
given the set of movies they have already rated, with each rating corresponding
to a tuple (user, movie, date), which can be enumerated in a tensor

§ Aside from this problem, tensor completion is a natural generalization of the
matrix completion problem, which is intensively used and studied in machine
learning



CP Tensor Completion Gradient and Hessian
§ The gradient of the tensor completion objective function is sparsified

according to the set of observed entries
§ Lets restrict attention to optimizing for the ith row of the first factor matrix,

define Ωi so that pj, kq P Ωi if s pi, j, kq P Ω, then

φpuiq “
ÿ

pj,kqPΩi

ptijk ´ xui,vj ,wkyq
2 ` λ}ui}

2
2 where xx,y, zy “

ÿ

r

xryrzr

§ Consider the derivative with respect to the ith row of the first factor matrix

∇φpuiq “
dφ

dui
puiq “ 2

ÿ

pj,kqPΩi

pvj ˚wkqpxui,vj ,wky ´ tijkq ` 2λui

§ ALS for tensor decomposition solves quadratic optimization problem for
each row of each factor matrix, in the completion case, Newton’s method on
these subproblems yields di�erent Hessians

§ The Hessian Hpφq
i depends on the set of entries Ωi “ tpj, kq : Dpi, j, kq P Ωu,

H
pφq
i “

dφ2

duidui
puiq “

ÿ

pj,kqPΩi

pvj ˚wkqpvj ˚wkq
T ` 2λI



Methods for CP Tensor Completion
§ ALS for tensor completion with CP decomposition incurs additional cost

§ For each pi, j, kq P Ω, need to accumulate pvj ˚wkqpvj ˚wkqT to Hpφq
i

§ While the n outer products can be amortized with cost OpnR2q, no easy way to
do so for their partial sums, leading to cost Op|Ω|R2q

§ Alternative methods for tensor completion include coordinate descent and
stochastic gradient descent

§ Stochastic gradient descent (SGD) would compute subgradients for each pi, j, kq
which are summands in the sum over Ωi in ∇φpuiq

§ SGD can be implemented e�ciently, by computing a sum over a random set of
subgradients at a time, via subsampling of Ω

§ Coordinate descent optimizes an entry of each factor matrix at a time
§ Variants of coordinate descent select di�erent orderings of entries to optimize,

e.g., alternating among columns of factor matrices then factor matrices or vice
versa



Coordinate Descent for CP Tensor Completion
§ Coordinate descent avoids the need to solve linear systems of equations

§ The coordinate-wise objective function is

ψpuirq “
ÿ

pj,kqPΩi

pρ
prq
ijk´uirvjrwkrq

2`λu2
ir where ρprqijk “ tijk´xui,vj ,wky`uirvirwkr

above ρprqijk is equal to an entry of the residual tensor with the rth rank-one
component of the CP decomposition excluded

§ Taking its derivative, we obtain

ψ1puirq “ ´2
ÿ

pj,kqPΩi

vjrwkrpρ
prq
ijk ´ uirvjrwkrq ` 2λuir

§ Setting this derivative to zero, we can solve for uir

u
pnewq
ir “

ř

pj,kqPΩi
vjrwkrρ

prq
ijk

λ`
ř

pj,kqPΩi
v2
jrw

2
kr

§ This can be implemented e�ciently by keeping track of a residual tensor and
obtaining ρprqijk as a modification thereof when working on the rth column



Sparse Tensor Contractions
§ Tensor completion and sparse tensor decomposition require operations on

sparse tensors
§ In many publicly available sparse tensor datasets, the density is extremely low,

e.g., 10´7, i.e., there can be Opnq nonzeros in interesting nˆ nˆ n tensors
§ For both decomposition and completion, tensor sparsity does not generally

imply sparsity of CP or Tucker factors, and these are typically assumed to be
dense

§ Sparse tensor contractions often correspond to products of hypersparse
matrices, i.e., matrices with mostly zero rows

§ Consider TTM with a nˆ nˆ n tensor T containing Opnq nonzeros, T T
p1qM , the

matrix T T
p1q has Opnq nonzeros, but n2 rows, while T T

p1qM has Opnq dense rows
and all other Opn2q rows are zero

§ To reduce sparse tensor contractions to sparse matrix multiplication kernels,
need support for hypersparse matrix formats (e.g., compressed sparse-row
(CSR) format would require Θpn2q storage for Tp1q) and ideally specialized
formats for matrices such as T T

p1qM (e.g., dense matrix consisting of nonzero
rows and vector of row indices)



Sparse Tensor Formats
§ The overhead of transposition, and non-standard nature of the arising

sparse matrix products, motivates sparse data structures for tensors that
are suitable for tensor contractions of interest

§ Particularly important, especially for tensor decomposition, are MTTKRP
(su�ces to CP ALS) and TTMc (su�ces for HOOI)

§ TTM is also prevalent, but is a less attractive primitive in the sparse case than
MTTKRP and TTMc, as these yield dense, low-order outputs, while the output of
TTM can be sparse and larger than the starting tensor

§ The compressed sparse fiber (CSF) format provides an e�ective
representation for sparse tensors

§ CSF can be visualized as a tree (diagram taken from original CSF paper, by
Shaden Smith and George Karpis, IAˆ3, 2015)



Operations in Compressed Format

§ CSF permits e�cient execution of important sparse tensor kernels
§ Analogous to CSR format, which enables e�cient implementation of the sparse

matrix vector product
§ where row[i] stores a list of column indices and nonzeros in the ith row of A

for i in range(n):
for (a_ij ,j) in row[i]:

y[i] += a_ij * x[j]

§ In CSF format, a multilinear function evaluation f pT qpx,yq “ Tp1qpxd yq can
be implemented as

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for (k,t_ijk) in T_ij:
z[i] += t_ijk * x[j] * y[k]



MTTKRP in Compressed Format
§ MTTKRP and CSF pose additional implementation opportunities and

challenges
§ MTTKRP uir “

ř

j,k tijkvjrwkr can be implemented by adding a loop over r to
our code for f pT q, but would then require 3mr operations if m is the number of
nonzeros in T , can reduce to 2mr by amortization

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for r in range(R):
f_ij = 0
for (k,t_ijk) in T_ij:

f_ij += t_ijk * w[k,r]
u[i,r] = f_ij * v[j,r]

§ However, this amortization is harder (requires storage or iteration overheads) if
the index i is a leaf node in the CSF tree

§ Similar challenges in achieving good reuse and obtaining good arithmetic
intensity arise in implementation of other kernels, such as TTMc



All-at-once Contraction
§ When working with sparse tensors, it is often more e�cient to contract

multiple operands in an all-at-once fashion
§ Given chain of matrix products ABC ¨ ¨ ¨ , dimension of overall iteration space

scales with number of matrices, but by contracting pairwise, obtain cubic cost in
matrix dimension with linear dependence on number of matrices

§ A case when such pairwise contraction is not a good idea, is the sampled
dense-dense matrix-multiplication (SDDMM),

cij “
R
ÿ

r

aijuirvjr ô C “ A ˚ pUV T q

where A is sparse with m nonzeros, while U and V are dense
§ Since the sparsity pattern of C is the same as of A, su�ces to iterate over

nonzeros of A and multiply each by inner product of a row of U and a row of V ,
with cost OpmRq

§ Pairwise contraction is ine�cient, contracting first A with U would yield a
third-order intermediate, while contracting U with V T would have cost Opn2Rq

§ Generalizing SDDMM to higher order gives the tensor-times tensor-product
(TTTP), an application of which is computing the residual in tensor completion



Constrained Tensor Decomposition

§ Many applications of tensor decomposition in data science, feature
additional structure, which can be enforced by constraints

§ A basic and common constraint is nonnegativity of factor matrices, which often
makes sense when working with a tensor that is nonnegative (e.g., count data)

§ Most of the methods we’ve discussed can be generalized to handle
nonnegativity, e.g., one could perform ALS by solving each subproblem subject
to nonnegativity constraints

§ Another common constraint is factor matrix orthogonality, which can be
incorporated similarly into subproblems

§ For symmetric tensors, repeating factors are often desired, which can be
formulated via constraints or by using an appropriate method (two good
alternatives are ALS with subiterations to converge updates to repeated factors,
or Gauss-Newton, which automatically preserves repeating factors when
working with a symmetric tensor)



Nonnegative Tensor Factorization
§ Nonnegative tensor factorization (NTF), such as CP decomposition with
T ě 0 and U ,V ,W ě 0 are widespread and a few classes of algorithms
have been developed

§ Optimization for one of U , V , or W (while the other two are fixed) is a convex
optimization problem

§ Many methods based on alternating optimization/updates in the style of ALS
§ A basic approach is to ‘clip’ result of ALS step so that each factor matrix is

nonnegative after update
§ Block coordinate descent (BCD) methods update on or more columns of U , V ,

or W based on a coordinate-descent-like update rule
§ Proximal gradient methods are multicolumn BCD methods, which approximately

solve each subproblem by minimizing a constrained objective derived based on
a proximally projected gradient

§ All-at-once methods that update all factor matrices, such as Gauss-Newton
with an augmented Lagrangian objective function (sequential quadratic
programming)



Nonnegative Matrix Factorization
§ NTF algorithms with alternating updates have a close correspondence with

alternating update algorithms for Nonnegative matrix factorization (NMF)
§ The rank-r NMF problem is to find, given matrix A P Rnˆn` , the minimizer
U ,V P Rnˆr` to

f pAqpU ,V q “ }A´UV T }F

§ Solutions to NMF are not easy to compute directly as for the unconstrained
low-rank matrix factorization case

§ Methods often minimize φpAqV pUq “ f pAqpU ,V q and ψpAqU pV q “ f pAqpU ,V q in an
alternating fashion via block coordinate descent

§ Alternating optimization problems for NTF are essentially the same as in NMF,
for

gpT qpU ,V ,W q “ }T ´ rrU ,V ,W ss}F

minimizing φpT qV ,W pUq “ gpT qpU ,V ,W q is the same as the NMF subproblem
φ
pTp1qq

V dW pUq “ f pTp1qqpU ,V dW q



Coordinate Descent for NMF and NTF
§ Coordinate descent gives optimal closed-form updates for variables in NMF

and NTF
§ We can write an optimization subproblem for a single column ui as minimizing

φ
pAq
i puiq “ }A´

R
ÿ

r“1

urv
T
r }2 s.t. ui ě 0

unew
i “ |ui `

Avi ´UV
Tvi

vTi vi
|`

where y “ |x|` gives yi “ xi if xi ą 0 and yi “ 0 otherwise
§ Given ρpiq “ A´UV T ` uiv

T
i “ A´

ř

j‰i ujv
T
j , if columns of V are

normalized, we can alternatively write the update as

unew
i “ |

ρpiqvi
vTi vi

|`



Generalized Tensor Decomposition
§ Aside from addition of constraints, the objective function may be modified by

using di�erent elementwise loss functions
§ The standard loss function is px´mq2 where x is an element of the tensor and
m is its approximation via CP

§ For count data, the Poisson loss function m´ x logpmq may be more
appropriate, and typically comes along with nonnegativity constraints

§ Other distributions and loss functions of interest include Gamma, Rayleigh,
Bernoulli, and NegBinom (see D. Hong, T. Kolda, J. Duersch SIAM Review 2020)

§ Some loss function admit ALS-like algorithms, while others may require
gradient-based optimization

§ Can compute (sub-)gradients given any loss function, by di�erentiating as
necessary

§ For Poisson, like for the standard loss function, ALS subproblems may be solved
explicitly, allowing more robust convergence
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