CS 598 EVS: Tensor Computations

Matrix Computations Background

Edgar Solomonik

University of Illinois at Urbana-Champaign

Conditioning

► Absolute Condition Number:

► (Relative) Condition Number:

Posedness and Conditioning

What is the condition number of an ill-posed problem?

Matrix Condition Number

▶ The matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball (norm-1 vectors) transformed by A:

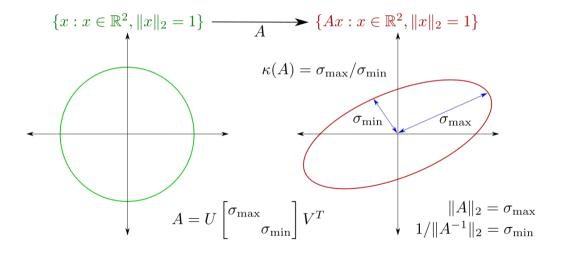
The matrix condition number bounds the worst-case amplification of error in a matrix-vector product:

Singular Value Decomposition

► The singular value decomposition (SVD)

Condition number in terms of singular values

Visualization of Matrix Conditioning



Linear Least Squares

▶ Find $x^* = \operatorname{argmin}_{x \in \mathbb{R}^n} ||Ax - b||_2$ where $A \in \mathbb{R}^{m \times n}$:

• Given the SVD $A = U\Sigma V^T$ we have $x^\star = \underbrace{V\Sigma^\dagger U^T}_{A^\dagger} b$, where Σ^\dagger contains the reciprocal of all nonzeros in Σ , and more generally \dagger denotes pseudoinverse:

Normal Equations

Demo: Normal equations vs Pseudoinverse **Demo:** Issues with the normal equations

Normal equations are given by solving $A^TAx = A^Tb$:

However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

Solving the Normal Equations

• If A is full-rank, then A^TA is symmetric positive definite (SPD):

Since A^TA is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

QR Factorization

If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that A = QR

A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular

We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

Computing the QR Factorization

The Cholesky-QR algorithm uses the normal equations to obtain the QR factorization

 Orthogonalization-based methods are most efficient and stable for QR factorization of dense matrices

Eigenvalue Decomposition

▶ If a matrix *A* is diagonalizable, it has an *eigenvalue decomposition*

• A and B are similar, if there exist Z such that $A = ZBZ^{-1}$

Similarity of Matrices

matrix	similarity	reduced form
SPD		
real symmetric		
Hermitian		
normal		
real		
diagonalizable		
arbitrary		

Rayleigh Quotient

For any vector x that is close to an eigenvector, the *Rayleigh quotient* provides an estimate of the associated eigenvalue of A:

Introduction to Krylov Subspace Methods

• Krylov subspace methods work with information contained in the $n \times k$ matrix

$$\boldsymbol{K}_k = \begin{bmatrix} \boldsymbol{x_0} & \boldsymbol{A} \boldsymbol{x_0} & \cdots & \boldsymbol{A}^{k-1} \boldsymbol{x_0} \end{bmatrix}$$

• $m{A}$ is similar to *companion matrix* $m{C} = m{K}_n^{-1} m{A} m{K}_n$:

Krylov Subspaces

• Given $Q_k R_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

$$\mathcal{K}_k(\boldsymbol{A}, \boldsymbol{x}_0) = span(\boldsymbol{Q}_k) = \{p(\boldsymbol{A})\boldsymbol{x}_0 : deg(p) < k\},\$$

where p is any polynomial of degree less than k.

▶ The Krylov subspace includes the k-1 approximate dominant eigenvectors generated by k-1 steps of power iteration:

Krylov Subspace Methods

▶ The $k \times k$ matrix $H_k = Q_k^T A Q_k$ minimizes $||AQ_k - Q_k H_k||_2$:

 $ightharpoonup oldsymbol{H}_k$ is upper-Hessenberg, because the companion matrix $oldsymbol{C}_n$ is upper-Hessenberg:

Rayleigh-Ritz Procedure

▶ The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

▶ The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k :

Low Rank Matrix Approximation

• Given a matrix $A \in \mathbb{R}^{m \times n}$ seek rank r < m, n approximation

Eckart-Young (optimal low-rank approximation by SVD) theorem

Rank Revealing Matrix Factorizations

Computing the SVD

QR with column pivoting

Orthogonal Iteration

► For sparse matrices, QR factorization creates fill, so must revert to iterative methods

Orthogonal iteration interleaves deflation and power iteration

Randomized SVD

Orthogonal iteration for SVD can also be viewed as a randomized algorithm

Generalized Nyström Algorithm

► The generalized Nyström algorithm provides an efficient way of computing a sketched low-rank factorization

Minimize
$$f(x)$$

Quadratic optimization
$$f(x) = \frac{1}{2}x^TAx - b^Tx$$

Basic Multidimensional Optimization Methods

ightharpoonup Steepest descent: minimize f in the direction of the negative gradient:

▶ Given quadratic optimization problem $f(x) = \frac{1}{2}x^TAx + b^Tx$ where A is symmetric positive definite, the error $e_k = x_k - x^*$ satisfies

$$||e_{k+1}||_{A} =$$

- When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- ightharpoonup Convergence rate depends on the conditioning of A, since

Gradient Methods with Extrapolation

• We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

▶ The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

lim leal & c

Conjugate Gradient Method

▶ The *conjugate gradient method* is capable of making the optimal (for a quadratic objective) choice of α_k and β_k at each iteration of an extrapolation method:

Parallel tangents implementation of the method proceeds as follows

Krylov Optimization

Conjugate gradient (CG) finds the minimizer of $f(x) = \frac{1}{2}x^T Ax - b^T x$ (which satisfies optimality condition Ax = b) within the Krylov subspace of A:

CG and Krylov Optimization

The solution at the kth step, $y_k = ||b||_2 T_k^{-1} e_1$ is obtained by CG from y_{k+1} with a single matrix-vector product with A and vector operations with O(n) cost

Preconditioning

• Convergence of iterative methods for Ax = b depends on $\kappa(A)$, the goal of a preconditioner M is to obtain x by solving

$$\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{M}^{-1}\boldsymbol{b}$$

with
$$\kappa(\boldsymbol{M}^{-1}\boldsymbol{A}) < \kappa(\boldsymbol{A})$$

lacktriangle Common preconditioners select parts of $m{A}$ or perform inexact factorization

Conjugate Gradient Convergence Analysis

In previous discussion, we assumed K_n is invertible, which may not be the case if A has m < n distinct eigenvalues, however, in exact arithmetic CG converges in m-1 iterations¹

¹This derivation follows *Applied Numerical Linear Algebra* by James Demmel, Section 6.6.4

Conjugate Gradient Convergence Analysis (II)

• Using $m{z} = m{
ho}_{k-1}(m{A}) m{A} m{x}$, we can simplify $\phi(m{z}) = (m{x} - m{z})^T m{A} (m{x} - m{z})$ as

• We can bound the objective based on the eigenvalues of $A=Q\Lambda Q^T$ using the identity $p(A)=Qp(\Lambda)Q^T$,

Conjugate Gradient Convergence Analysis (III)

▶ Using our bound on the square of the residual norm $\phi(z)$, we can see why CG converges after m-1 iterations if there are only m < n distinct eigenvalues

▶ To see that the residual goes to 0, we find a suitable polynomial in \mathcal{Q}_m (the set of polynomials q_m of degree m with $q_m(0)=1$)

Round-off Error in Conjugate Gradient

 CG provides strong convergence guarantees for SPD matrices in exact arithmetic

Due to round-off CG may stagnate / have plateaus in convergence

Graph and Matrix Duality

graphs have have a natural correspondence with sparse matrices

matrix-based representations of graphs can be used to devise algorithms

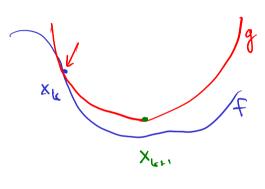
Graph Partitioning from Eigenvectors

► The Laplacian matrix provides a model of interactions on a graph that is useful in many contexts

► The second-smallest-eigenvalue eigenvector of the Laplacian (the Fiedler vector), gives a good partitioning of the graph

Newton's Method

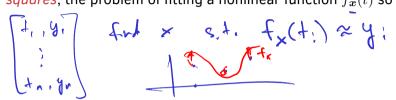
▶ Newton's method in *n* dimensions is given by finding minima of *n*-dimensional quadratic approximation using the gradient and Hessian of *f*:



$$\frac{H^{(x^k)}(x^{k+1}-x^k)}{+}=-\triangle +(x^k)$$

Nonlinear Least Squares

An important special case of multidimensional optimization is *nonlinear least* squares, the problem of fitting a nonlinear function $f_x(t)$ so that $f_x(t_i) \approx y_i$:



We can cast nonlinear least squares as an optimization problem to minimize residual error and solve it by Newton's method:

$$r(x) = f_{x}(f) - y;$$

$$r(x) = f_{x}(f) - y;$$

$$k_{e}(x_{b}) \leq k = -\nabla e(x_{b})$$

Gauss-Newton Method

► The Hessian for nonlinear least squares problems has the form:

$$\nabla e(x) = \int_{r}^{r}(x) r(x)$$

$$N_{e}(x) = \int_{r}^{r}(x) \int_{r}^{r}(x) + \sum_{k=1}^{r} N_{r}(k) \frac{r}{r}(x) \quad \text{the}$$

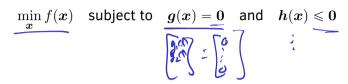
$$\int_{r}^{r}(x) \int_{r}^{r}(x) s_{k} = \int_{r}^{r}(x) r(x) \quad \text{such } x$$

$$\int_{r}^{r}(x) \int_{r}^{r}(x) s_{k} = \int_{r}^{r}(x) r(x) \quad \text{such } x$$

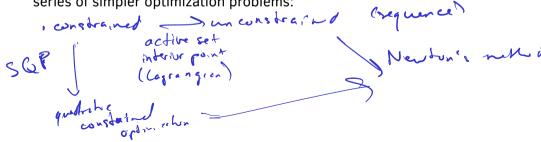
The Gauss-Newton method is Newton iteration with an approximate Hessian:

Constrained Optimization Problems

▶ We now return to the general case of *constrained* optimization problems:



Generally, we will seek to reduce constrained optimization problems to a series of simpler optimization problems:



Lagrangian Duality

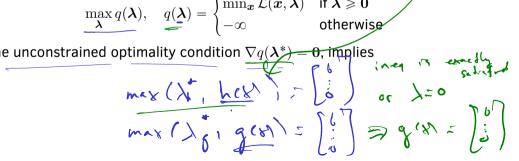
The Lagrangian function with constraints
$$g(x) = 0$$
 and $h(x) \leqslant 0$ is

$$L(x, x) = f(x) + f(x$$

The Lagrangian dual problem is an unconstrained optimization problem:

$$\underbrace{\max_{oldsymbol{\lambda}} q(oldsymbol{\lambda})}_{oldsymbol{\lambda}}, \quad \underbrace{q(oldsymbol{\lambda})}_{oldsymbol{\lambda}} = egin{cases} \min_{oldsymbol{x}} \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) & ext{if } oldsymbol{\lambda} \geqslant oldsymbol{0} \\ -\infty & ext{otherwise} \end{cases}$$

The unconstrained optimality condition $\nabla q(\lambda^*) = 0$, implies



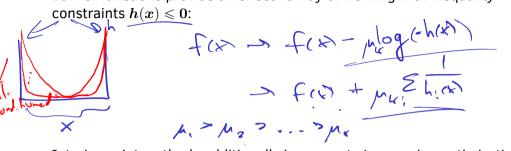
Sequential Quadratic Programming

Ignore het Sequential quadratic programming (SOP) reduces a nonlinear equality constrained problem to a sequence of constrained quadratic programs via a Taylor expansion of the Lagrangian function $\mathcal{L}_f(x, \lambda) = f(x) + \lambda^T g(x)$:

• SQP ignores the constant term $\mathcal{L}_f(x_k, \lambda_k)$ and minimizes s while treating δ as a Lagrange multiplier:

Interior Point Methods

▶ Barrier functions provide an effective way of working with inequality constraints h(x) < 0:



Interior point methods additionally incorporate Lagrangian optimization?

Karush-Kuhn-Tucker (KKT) conditions

Consider the linear-constrained Quadratic program (QP): Its Lagrangian

function may be used to derive an interior point method The first-order

optimality (KKT) conditions are

Primal-dual Interior Point Method (IPM)

Solve perturbed KKT conditions after introducing slack variables $s \in \mathbb{R}^{m_2}$

Interior Point Method (IPM): KKT system

Newton's method applied to KKT equations results in linear systems

These linear systems become ill-conditioned as the interior point method approaches converges