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Conditioning
» Absolute Condition Number:

» (Relative) Condition Number:



Posedness and Conditioning

» What is the condition number of an ill-posed problem?



Matrix Condition Number

» The matrix condition number x(A) is the ratio between the max and min
distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

» The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product:



Singular Value Decomposition
» The singular value decomposition (SVD)

» Condition number in terms of singular values



Visualization of Matrix Conditioning
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Linear Least Squares
» Find * = argming g ||Ax — b||s where A € R™*™:

» Giventhe SVD A = UXVT we have z* = VXIU” b, where =T contains the
—

At
reciprocal of all nonzeros in 3, and more generally { denotes pseudoinverse:



. Demo: Normal equations vs Pseudoinverse
Normal E quations Demo: Issues with the normal equations

» Normal equations are given by solving AT Az = ATb:

» However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm



Solving the Normal Equations
» If A is full-rank, then AT A is symmetric positive definite (SPD):

» Since AT A is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:



QR Factorization

» If A is full-rank there exists an orthogonal matrix Q and a unique
upper-triangular matrix R with a positive diagonal such that A = QR

» A reduced QR factorization (unique part of general QR) is defined so that
Q € R™*™ has orthonormal columns and R is square and upper-triangular

» We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows



Computing the QR Factorization

» The Cholesky-QR algorithm uses the normal equations to obtain the QR
factorization

» Orthogonalization-based methods are most efficient and stable for QR
factorization of dense matrices



Eigenvalue Decomposition
» If a matrix A is diagonalizable, it has an eigenvalue decomposition

» A and B are similar, if there exist Z suchthat A = ZBZ !



Similarity of Matrices
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Rayleigh Quotient

» For any vector x that is close to an eigenvector, the Rayleigh quotient
provides an estimate of the associated eigenvalue of A:



Introduction to Krylov Subspace Methods
» Krylov subspace methods work with information contained in the n x k matrix

Kk:[xo Axg - Akilwo]

> A is similar to companion matrix C = K, ' AK,:



Krylov Subspaces
» Given Q. R, = K;, we obtain an orthonormal basis for the Krylov subspace,

Ki(A,xo) = span(Qy) = {p(A)xo : deg(p) < k},
where p is any polynomial of degree less than k.

» The Krylov subspace includes the k — 1 approximate dominant eigenvectors
generated by k — 1 steps of power iteration:



Krylov Subspace Methods
> The k x k matrix Hy = QL AQ), minimizes ||AQx — QrHy||2:

» H, is upper-Hessenberg, because the companion matrix C,, is
upper-Hessenberg:



Rayleigh-Ritz Procedure

» The eigenvalues/eigenvectors of H, are the Ritz values/vectors:

» The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only H;, and Qy:



Low Rank Matrix Approximation
» Given a matrix A € R™*" seek rank » < m, n approximation

» Eckart-Young (optimal low-rank approximation by SVD) theorem



Rank Revealing Matrix Factorizations
» Computing the SVD

» QR with column pivoting



Orthogonal Iteration

» For sparse matrices, QR factorization creates fill, so must revert to iterative
methods

» Orthogonal iteration interleaves deflation and power iteration



Randomized SVD

» Orthogonal iteration for SVD can also be viewed as a randomized algorithm



Generalized Nystrom Algorithm

» The generalized Nystrom algorithm provides an efficient way of computing a
sketched low-rank factorization



Multidimensional Op"\cimization
» Minimize f(&) €
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> Quadratic optimization f(z) = 27 Az — bTx
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Basic Multidimensional Optimization Methods
» Steepest descent: minimize f in the direction of the negative gradient:

\ine yu(L

» Given quadratic optimization problem f(x) = %:cTA:c + bTx where A is
symmetric positive definite, the error e}, = x;,, — =* satisfies

lex+1lla =
» When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.
» Convergence rate depends on the conditioning of A, since



Gradient Methods with Extrapolation

» We can improve the constant in the linear rate of convergence of steepest
descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction x;, — x;,_1):

» The heavy ball method, which uses constant «;, = o and 5, = 3, achieves
better convergence than steepest descent:






Conjugate Gradient Method

» The conjugate gradient method is capable of making the optimal (for a
quadratic objective) choice of o, and 3, at each iteration of an extrapolation
method:

» Parallel tangents implementation of the method proceeds as follows



Krylov Optimization

» Conjugate gradient (CG) finds the minimizer of f(z) = 12”7 Az — b"x (which
satisfies optimality condition Ax = b) within the Krylov subspace of A:



CG and Krylov Optimization

The solution at the kth step, yi. = ||b||2T} 'e; is obtained by CG from yj..; with a
single matrix-vector product with A and vector operations with O(n) cost



Preconditioning

» Convergence of iterative methods for Az = b depends on x(A), the goal of a
preconditioner M is to obtain x by solving

M 1'Az = M'p
with s(M 1 A) < k(A)

» Common preconditioners select parts of A or perform inexact factorization



Conjugate Gradient Convergence Analysis

» In previous discussion, we assumed K, is invertible, which may not be the
case if A has m < n distinct eigenvalues, however, in exact arithmetic CG
converges in m — 1 iterations’

'This derivation follows Applied Numerical Linear Algebra by James Demmel, Section 6.6.4



Conjugate Gradient Convergence Analysis (II)
» Using z = pp_1(A)Ax, we can simplify ¢(2) = (x — 2)T A(x — 2) as

» We can bound the objective based on the eigenvalues of A = QAQT” using
the identity p(A) = Qp(A)Q7,



Conjugate Gradient Convergence Analysis (III)

» Using our bound on the square of the residual norm ¢(z), we can see why CG
converges after m — 1 iterations if there are only m < n distinct eigenvalues

» To see that the residual goes to 0, we find a suitable polynomial in Q,, (the
set of polynomials ¢,, of degree m with ¢,,,(0) = 1)



Round-off Error in Conjugate Gradient

» CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

» Due to round-off CG may stagnate / have plateaus in convergence



Graph and Matrix Duality

» graphs have have a natural correspondence with sparse matrices

» matrix-based representations of graphs can be used to devise algorithms



Graph Partitioning from Eigenvectors

» The Laplacian matrix provides a model of interactions on a graph that is
useful in many contexts

» The second-smallest-eigenvalue eigenvector of the Laplacian (the Fiedler
vector), gives a good partitioning of the graph



Newton’s Method

» Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f:
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Nonlinear Least Squares
» An important special case of multidimensional optimization is nonlinear least
squares, the problem of fitting a nonlinear function f.(t) so that fg(t;) ~ v;:
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» We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:
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Gauss-Newton Method
» The Hessian for nonlinear least squares problems has the form:
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» The Gauss-Newto thod is Newton |terat|on with an approximate Hessian:
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Constrained Optimization Problems
» We now return to the general case of constrained optimization problems:

min f(z) subjectto g(x)=0 and ha:

il

» Generally, we will seek to reduce constrained optimization problems to a
series of simpler optimization problems:
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Lagrangian Duality

» The Lagrangian function with constrai
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N
Sequential Quadratic Programming \Gror? wes

» Sequential quadratic programming (SQP) reduces a nonliaegr equality
constrained problem to a sequence of constrained programs via a
Taylor expansion of the Lagrangian function L ¢(x, () + A" g(x):
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» SQP ignores the constant term L (x, Ax) and minimizes s while treating §
as a Lagrange multiplier:




Interior Point Methods
» Barrier functions provide an effective way of working with inequality

constraints h(z) < 0:
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Karush-Kuhn-Tucker (KKT) conditions

Consider the linear-constrained Quadratic program (QP): Its Lagrangian

function may be used to derive an interior point method The first-order

optimality (KKT) conditions are



Primal-dual Interior Point Method (IPM)

Solve perturbed KKT conditions after introducing slack variables s € R™2



Interior Point Method (IPM): KKT system

Newton’s method applied to KKT equations results in linear systems

These linear systems become ill-conditioned as the interior point method
approaches converges



