CS 598 EVS: Tensor Computations Bilinear Algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign

Bilinear Problems

► A number of basic numerical problems can be thought of as bilinear functions associated with particular order 3 tensors

These problems admit nontrivial fast bilinear algorithms, which correspond to low-rank CP decompositions of the tensors

Bilinear Problems

▶ A bilinear problem for any inputs $a \in \mathbb{R}^n$ and $b \in \mathbb{R}^k$ computes $c \in \mathbb{R}^m$ as defined by a tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times k}$

ightharpoonup Variants of discrete convolutions (linear convolution, correlation, cyclic convolution) provide simple examples of ${\cal T}$

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) $\Lambda = ({m F}^{(A)}, {m F}^{(C)}, {m F}^{(C)})$ computes where ${m a}$

and \boldsymbol{b} are inputs and * is the Hadamard (pointwise) product.

Bilinear Algorithms as Tensor Factorizations

▶ A bilinear algorithm corresponds to a CP tensor decomposition

For multiplication of $n \times n$ matrices, we can define a *matrix multiplication* tensor and consider algorithms with various bilinear rank

Strassen's Algorithm

Strassen's algorithm
$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$C_{11} = M_1 + M_4 - M_5 + M_7$$

$$M_2 = (A_{21} + A_{22}) \cdot B_{11}$$

$$C_{21} = M_2 + M_4$$

$$M_3 = A_{11} \cdot (B_{12} - B_{22})$$

$$C_{12} = M_3 + M_5$$

$$C_{12} = M_3 + M_5$$

$$C_{22} = M_1 - M_2 + M_3 + M_6$$

$$M_4 = A_{22} \cdot (B_{21} - B_{11})$$

$$C_{22} = M_1 - M_2 + M_3 + M_6$$

$$M_5 = (A_{11} + A_{12}) \cdot B_{22}$$

$$M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$$

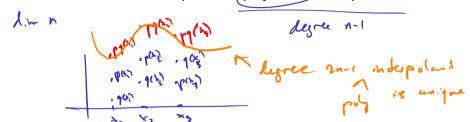
$$M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

By performing the nested calls recursively, Strassen's algorithm achieves cost,

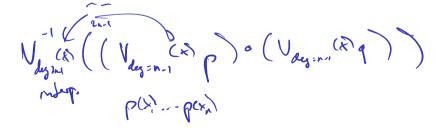
Bilineer problem

Fast Bilinear Algorithms for Convolution

Linear convolution corresponds to polynomial multiplication



▶ The *Toom-Cook* convolution algorithm computes the coefficients of $p \cdot q$ by computing $(p \cdot q)(x_i)$ for $i \in \{1, \ldots, n+k-1\}$ and interpolates



Toom-Cook Convolution and the Fourier Transform

 Vandermonde matrices are ill-conditioned with real nodes, but can be perfectly conditioned with complex nodes

$$\alpha_{1+n,i_{2}} = \sum_{j=1}^{n_{1}} \sum_{j_{2}} \omega_{n}^{i_{1}j_{2}} . \quad \omega_{n}^{i_{1}j_{2}} \sum_{j_{1}} \omega_{n}^{i_{2}j_{2}} . \quad \omega_{n}^{i_{1}j_{2}} \sum_{j_{1}} \omega_{n}^{i_{1}j_{2}} . \quad \omega_{n}^{i_{1$$

radix-2 DFT
$$N_1=2 \qquad \Rightarrow T(n) = 2T(n/2) + O(n) = O(n \log n)$$

$$N_1=N_2=In \qquad \Rightarrow T(n) = 2In) T(3n) + O(n) = O(n \log n)$$

naloglos nalogn

Cyclic Convolution via DFT

For linear convolution $oldsymbol{D}^{(n+k-1)}$ is used, for cyclic convolution $oldsymbol{D}^{(n)}$ suffices

▶ The DFT also arises in the eigendecomposition of a circulant matrix

Winograd's Algorithm for Convolution

► The DFT/FFT requires complex arithmetic, motivating alternatives such as the more general Winograd family of algorithms

```
P, q as input and large goly nomials
                                       M=m, .-. m,
F; = V= pg mod (mg) for i & & 1, ..., n3
                      Chinese remando Nevrem
                          , recovery of a (19) toom
     MI =X
                             remaindr Ti -- Th
   p.g mod m, = 2

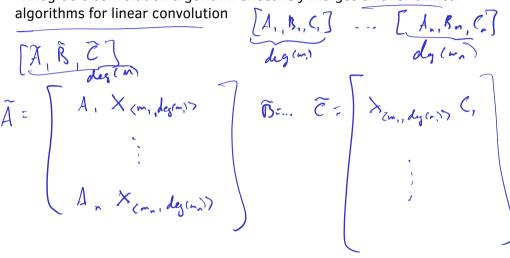
m = 217x

2+4x+llx21...
                           . A 1 = M/m; = m, -- m 1, my com
                            by A: WisM/A:
```

 Winograd's convolution algorithm can be written as a bilinear algorithm by defining appropriate linear transformations

• Given an operator $X_{\langle m,d\rangle} \in \mathbb{C}^{\deg(m)\times(d+1)}$ to compute coefficients of $\rho=p\pmod{m}$, we can efficiently compute

Winograd's convolution algorithm effectively merges smaller bilinear algorithms for linear convolution



bly may x-x! = b(x!)

 ${}^{\blacktriangleright}$ A missing piece of the above formulation is how to realize Bézout's identity to compute $N^{(i)}$ and $e^{(i)}$

Nested Bilinear Algorithms for Convolution

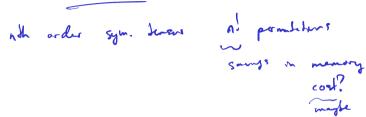
2D convolution is equivalent to nested 1D convolution

▶ 1D convolution can be reduced to 2D convolution with some work

For more details on the above derivations and a broader survey of convolution algorithms, see https://arxiv.org/abs/1910.13367

Symmetric Tensor Contractions

 Bilinear algorithms can also be used to accelerate tensor contractions for tensors with symmetry



 Bilinear algorithms for symmetric tensor contractions exist with lower rank than their nonsymmetric counterparts

```
behiner public of mal. ver.

Te R**n**

Sym. mol. vec

TE R
```

Symmetric Matrix Vector Product

Consider computing
$$c = Ab$$
 with $A = A^T$

$$c_1 = \sum_{j=1}^{\infty} a_{jj}b_{jj}$$

$$a_{jj} = a_{jj}$$

$$C_1 = \sum_{j=1}^{n} a_{ij}(b_{i} + b_{j}) - \left(\sum_{j=1}^{n} a_{ij}b_{i}\right)$$

$$C_{1} = \sum_{j=1}^{n} a_{jj}(b_{j} + b_{j}) - \left(\sum_{j=1}^{n} a_{jj}b_{j}\right)$$

$$C_{1} = \sum_{j=1}^{n} a_{jj}(b_{j} + b_{j}) - \left(\sum_{j=1}^{n} a_{jj}b_{j}\right)$$

Partially-Symmetric Tensor Times Matrix (TTM)

Can use symmetric mat-vec algorithm to accelerate TTM with partially symmetric tensor from $2n^4$ operations to $(3/2)n^4 + \overline{O(n^3)}$

$$w_{12} = \sum_{i=1}^{k} u_{i}^{(k)} u_{i}^{(k)} = \sum_{i=1}^{k} u_{i}^{(k$$

 $2 \cdot n \cdot \frac{n(n+1)}{2} \cdot n = \frac{n}{2} + 0 \cdot (n^{3})$

Computing Symmetric Matrices

• Output symmetry can also be used to reduced cost, for example when computing a symmetrized outer product $C = ab^T + ba^T$

lacktriangleright To symmetrize product of two symmetric matrices, can compute anticommutator, $oldsymbol{C} = oldsymbol{A} oldsymbol{B} + oldsymbol{B} oldsymbol{A}$

General Symmetric Tensor Contractions

We can now consider the cost of a symmetrized contraction over v indices of symmetric tensors \mathcal{A} (of order s+v) and \mathcal{B} (of order v+t)

Such tensor contractions can be done using $n^{s+t+v}/(s+t+v)! + O(n^{s+t+v-1})$ products