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Bilinear Problems

» A number of basic numerical problems can be thought of as bilinear
functions associated with particular order 3 tensors

» These problems admit nontrivial fast bilinear algorithms, which correspond
to low-rank CP decompositions of the tensors



Bilinear Problems

» A bilinear problem for any inputs a € R™ and b € R*¥ computes c € R™ as
defined by a tensor T~ € Rm*x"xk

» Variants of discrete convolutions (linear convolution, correlation, cyclic
convolution) provide simple examples of T~



Bilinear Algorithms
A bilinear algorithm (V. Pan, 1984) A = (F(), F(B) F(©)) computes where a

and b are inputs and = is the Hadamard (pointwise) product.



Bilinear Algorithms as Tensor Factorizations
» A bilinear algorithm corresponds to a CP tensor decomposition

» For multiplication of n x n matrices, we can define a matrix multiplication
tensor and consider algorithms with various bilinear rank



Strassen’s Algorithm

Strassen’s algorithm [C“ Cm] = [All

Cy Ca Ao
M = (A11 + Azz) - (Bu1 + Ba2)
M, = (A21 + Az) - Bux
M3 = Ai1 - (Bi2 — Ba2)

d( \" M,y = Ay - (B21 — Bi1)

(}f M5 = (Ai1 + A12) - B

Bll

Az
Azz By

B12]
Bs;
Cy1 = My + My — M5 + M-
Cy = M, + M,
Ci2 = M3 + M5
Co = My — My + Ms + Mg

Mg = (Az1 — A1) - (Bi1 + Bia)
M7 = (A2 — Ag) - (B21 + Ba2)

By performing the nested calls recursively, Strassen’s algorithm achieves cost,
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Fast Bilinear Algorithms for Convolutio
» Linear convolution corresponds 'WI multiplication
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» The Toom-Cook convolution algorithm computes the coefficients of p - ¢ by
computing (p- q)(x;) fori e {1,...,n + k — 1} and interpolates
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Toom-Cook Convolution and the Fourier Transform

> Vandermonde matrices are ill-conditioned with real nodes, but can be
perfectly conditioned with complex nodes

» The fast Fourier transform (FFT) can be used to perform products with the

vfw DFT matrix in O(nlogn) time W = §) Vv N, an, NeAyh,
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redx-v DFT
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Cyclic Convolution via DFT
» For linear convolution D™*%=1) js used, for cyclic convolution D" suffices

» The DFT also arises in the eigendecomposition of a circulant matrix
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Winograd’s Algorithm for Convolution

» The DFT/FFT requires complex arithmetic, motivating alternatives such as
the more general Winograd family of algorithms

‘n \." Ll (zM’_"Q(’ MSM‘ LR | O
as nq

S 3 wmod A =p4q "‘t”" 7"‘)&’

\«\] | maJ@ Soc \.e{\_-,,“?S

m‘ o ’h’\’\ e @rrv‘lﬁ*
- 4 Ax - —_
P' l v ClMivert  remands MJA’"“*
Q- g4 D> +X " Lo
=X =
”m, f):n. \““J—( . oL . (‘v\
T e
1 ma} N\, ¥ ,A 1= M/ﬂ\‘, s om, T My < -hh

W T ,u'ix L>) . My M/n

Q + G~ Ux i .



Algebraic Formulation of Winograd’s Algorithm for Convolution

» Winograd’s convolution algorithm can be written as a bilinear algorithm by
defining appropriate linear transformations
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Algebraic Formulation of Winograd’s Algorithm for Convolution

» Given an operatorwlj to compute coefficients of p =
(mod m), we can efficiently compute
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Algebraic Formulation of Winograd’s Algorithm for Convolution

» Winograd’s convolution algorithm effectively merges smaller bilinear

algorithms for linear convolution
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Algebraic Formulation of Winograd’s Algorithm for Convolution

» A missing piece of the above formulation is how to realize Bézout’s identity
to compute N@ and e®



Nested Bilinear Algorithms for Convolution
» 2D convolution is equivalent to nested 1D convolution
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» 1D convolution can be reduced to 2D convolution with some work
[

» For more details on the above derivations and a broader survey of
convolution algorithms, see https://arxiv.org/abs/1910.13367



Symmetric Tensor Contractions

» Bilinear algorithms can also be used to accelerate tensor contractions for
tensors with symmetry
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» Bilinear algorithms for symmetric tensor contractions exist with lower rank
than their nonsymmetric counterparts

L.\v'\m G(J\VL“\ 4‘/ "““’( veC.

Ted

TY - mhovee

DA X n &P
TelR



Symmetric Matrix Vector Product

» Consider computing ¢ = Ab with A = AT
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Partially-Symmetric Tensor Times Matrix (TTM)
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» Can use symmetric mat-vec algorithm to accelerate TTM with partially

symmetric tensor from 2n* operations to (3/2)n* + O(n3 (n
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Computing Symmetric Matrices
» Output symmetry can also be used to reduced cost, for example when
computing a symmetrized outer product C = ab” + ba”

» To symmetrize product of two symmetric matrices, can compute
anticommutator, C = AB + BA



General Symmetric Tensor Contractions
» We can now consider the cost of a symmetrized contraction over v indices of
symmetric tensors A (of order s + v) and B (of order v + t)

» Such tensor contractions can be done using
ns T /(s +t 4+ v)! + O(n* =1 products



