CS 598 EVS: Tensor Computations

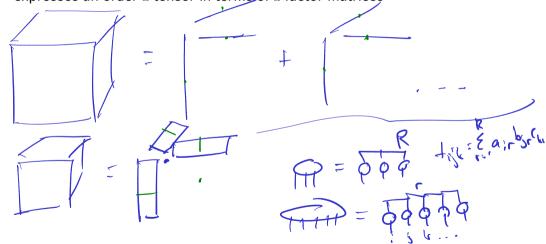
Tensor Decomposition

Edgar Solomonik

University of Illinois at Urbana-Champaign

CP Decomposition Rank

► The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition expresses an order d tensor in terms of d factor matrices

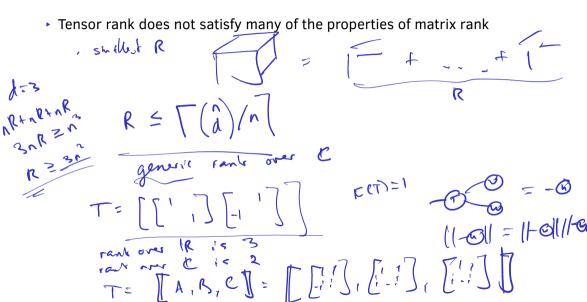


CP - CANDECOMP/PARAFAC togon - canonical polyadic 1927 Hikheod nxnxn Applications - Wilher algorithms (rexact CP, R>n) - data analysis (hybroide chutung)
- modelling (CP completion) - performance of applications for differs personely

- but-order methods (compressor)

- quantum champing

Tensor Rank Properties



multiple proposed to 12 3 mil 18% had 3 my 21% hop · fre n=2, her coe 2 hypred rabs if there is only are dyfred san't, it is the generic rank , over to, fee all no her symmetre towns, the is generic rank $R = \int (a)^n da$

Typical Rank and Generic Rank

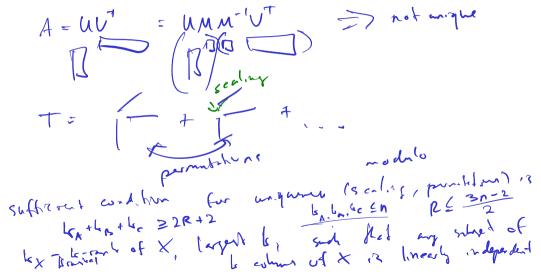
▶ When there is only a single typical tensor rank, it is the *generic rank*

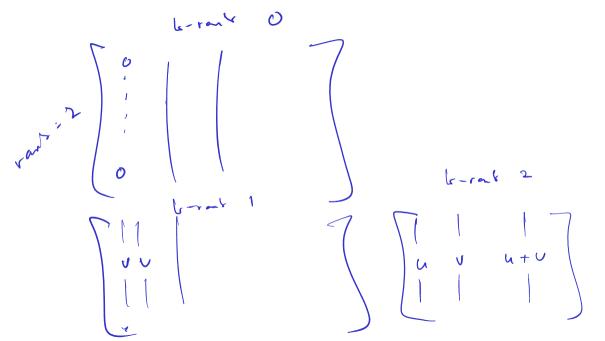
```
r for n, xn2 dn3 for r

R & min (n, n2, n2h2, n, n3)
```

Uniqueness Sufficient Conditions

Unlike the low-rank matrix case, the CP decomposition can be unique





Uniqueness Necessary Conditions

 Necessary conditions for uniqueness of the CP decomposition also exist. T= MUNW rank (UOV)=R
rank (UOW)
rank (UOW) rank (UOV) 2 rank (UOV) rank (UOV) = rank (UOV) = rank (UOV)

Degeneracy

► The best rank-k approximation may not exist, a problem known as degeneracy of a tensor

The proof of a tensor

$$T = \underbrace{a_1 \circ b_1 \circ c_2}_{1} \circ c_2 + \underbrace{a_1 \circ b_2 \circ c_1}_{2} + \underbrace{a_2 \circ b_1 \circ c_1}_{2} + \underbrace{a_2 \circ b_2 \circ c_1}_{2} + \underbrace{a_2 \circ c_1}_{2} +$$

Border Rank

► Degeneracy motivates an approximate notion of rank, namely border rank

· border rank R implier we can find a regunce to (P-ras(T) = R tim | 1 - T/ = 0 · for bilme public term T reporting mat. mel. · horder rack it in [14,21] · rout is in [19,23]

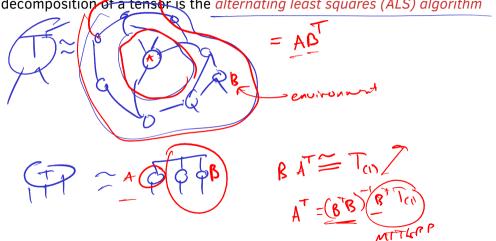
Approximation by CP Decomposition

 Approximation via CP decomposition is a nonlinear optimization problem nonlihrer least squares

min 2 | till - Eairbirerr | 2 of Time (COB) + min pairie)

Alternating Least Squares Algorithm

 The standard approach for finding an approximate or exact CP decomposition of a tensor is the alternating least squares (ALS) algorithm



alternating before equitors

(m)

Alternating Least Squares for Tucker Decomposition

► For Tucker decomposition, an analogous optimization procedure to ALS is referred to as *high-order orthogonal iteration (HOOI)*

Dimension Trees for ALS

▶ The cost of ALS can be reduced by amortizing computation common terms

Fast Residual Norm Calculation

ightharpoonup Calculating the norm of the residual has cost $2ds^dR$, but can be done more cheaply within ALS

Pairwise Perturbation Algorithm

 A route to further reducing the cost of ALS is to perform it approximately via pairwise perturbation

Pairwise Perturbation Second Order Correction

 When approximating a tensor using CP, the partially converged CP factors can sometimes be used in place of the tensor to accelerate cost

Approximate CP ALS using Random Sampling

► Another approach to approximating ALS is to sample the least-squares equations¹

¹C. Battaglino, G. Ballard, T. G. Kolda, 2018

Gauss-Newton Algorithm

 ALS generally achieves linear convergence, while Newton-based methods can converge quadratically

Gauss-Newton for CP Decomposition

• CP decomposition for order d=3 tensors (d>3 is similar) minimizes

Gauss-Newton for CP Decomposition

A step of Gauss-Newton requires solving a linear system with H

Tensor Completion

► The tensor completion problem seeks to build a model (e.g., CP decomposition) for a partially-observed tensor

 The problem was partially popularized by the Netflix prize collaborative filtering problem

CP Tensor Completion Gradient and Hessian

 The gradient of the tensor completion objective function is sparsified according to the set of observed entries

 ALS for tensor decomposition solves quadratic optimization problem for each row of each factor matrix, in the completion case, Newton's method on these subproblems yields different Hessians

Methods for CP Tensor Completion

ALS for tensor completion with CP decomposition incurs additional cost

 Alternative methods for tensor completion include coordinate descent and stochastic gradient descent

Coordinate Descent for CP Tensor Completion

Coordinate descent avoids the need to solve linear systems of equations

Sparse Tensor Contractions

 Tensor completion and sparse tensor decomposition require operations on sparse tensors

 Sparse tensor contractions often correspond to products of hypersparse matrices, i.e., matrices with mostly zero rows

Sparse Tensor Formats

 The overhead of transposition, and non-standard nature of the arising sparse matrix products, motivates sparse data structures for tensors that are suitable for tensor contractions of interest

► The *compressed sparse fiber (CSF)* format provides an effective representation for sparse tensors

Operations in Compressed Format

- CSF permits efficient execution of important sparse tensor kernels
 - Analogous to CSR format, which enables efficient implementation of the sparse matrix vector product
 - lacktriangle where row[i] stores a list of column indices and nonzeros in the ith row of $m{A}$

```
for i in range(n):
    for (a_ij,j) in row[i]:
       y[i] += a_ij * x[j]
```

In CSF format, a multilinear function evaluation $f^{(\mathcal{T})}(x,y) = T_{(1)}(x\odot y)$ can be implemented as

```
for (i,T_i) in T_CSF:
    for (j,T_ij) in T_i:
        for (k,t_ijk) in T_ij:
        z[i] += t_ijk * x[j] * y[k]
```

MTTKRP in Compressed Format

- MTTKRP and CSF pose additional implementation opportunities and challenges
 - MTTKRP $u_{ir} = \sum_{j,k} t_{ijk} v_{jr} w_{kr}$ can be implemented by adding a loop over r to our code for $f^{(\mathcal{T})}$, but would then require 3mr operations if m is the number of nonzeros in \mathcal{T} , can reduce to 2mr by amortization

```
for (i,T_i) in T_CSF:
  for (j,T_ij) in T_i:
    for r in range(R):
      f_ij = 0
      for (k,t_ijk) in T_ij:
        f_ij += t_ijk * w[k,r]
      u[i,r] = f_ij * v[j,r]
```

- However, this amortization is harder (requires storage or iteration overheads) if the index i is a leaf node in the CSF tree
- Similar challenges in achieving good reuse and obtaining good arithmetic intensity arise in implementation of other kernels, such as TTMc

All-at-once Contraction

 When working with sparse tensors, it is often more efficient to contract multiple operands in an all-at-once fashion

Constrained Tensor Decomposition

 Many applications of tensor decomposition in data science, feature additional structure, which can be enforced by constraints

Nonnegative Tensor Factorization

Nonnegative tensor factorization (NTF), such as CP decomposition with $T \geqslant 0$ and $U, V, W \geqslant 0$ are widespread and a few classes of algorithms have been developed

Nonnegative Matrix Factorization

 NTF algorithms with alternating updates have a close correspondence with alternating update algorithms for Nonnegative matrix factorization (NMF)

Coordinate Descent for NMF and NTF

 Coordinate descent gives optimal closed-form updates for variables in NMF and NTF

Generalized Tensor Decomposition

 Aside from addition of constraints, the objective function may be modified by using different elementwise loss functions

 Some loss function admit ALS-like algorithms, while others may require gradient-based optimization