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CP Decomposition Rank
§ The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition
expresses an order d tensor in terms of d factor matrices



Tensor Rank Properties
§ Tensor rank does not satisfy many of the properties of matrix rank



Typical Rank and Generic Rank
§ When there is only a single typical tensor rank, it is the generic rank



Uniqueness Su�cient Conditions
§ Unlike the low-rank matrix case, the CP decomposition can be unique



Uniqueness Necessary Conditions
§ Necessary conditions for uniqueness of the CP decomposition also exist



Degeneracy
§ The best rank-k approximation may not exist, a problem known as
degeneracy of a tensor



Border Rank
§ Degeneracy motivates an approximate notion of rank, namely border rank



Approximation by CP Decomposition
§ Approximation via CP decomposition is a nonlinear optimization problem



Alternating Least Squares Algorithm
§ The standard approach for finding an approximate or exact CP
decomposition of a tensor is the alternating least squares (ALS) algorithm



Properties of Alternating Least Squares for CP



Alternating Least Squares for Tucker Decomposition
§ For Tucker decomposition, an analogous optimization procedure to ALS is
referred to as high-order orthogonal iteration (HOOI)



Dimension Trees for ALS
§ The cost of ALS can be reduced by amortizing computation common terms



Fast Residual Norm Calculation
§ Calculating the norm of the residual has cost 2dsdR, but can be done more
cheaply within ALS



Pairwise Perturbation Algorithm
§ A route to further reducing the cost of ALS is to perform it approximately via
pairwise perturbation



Pairwise Perturbation Second Order Correction
§ When approximating a tensor using CP, the partially converged CP factors
can sometimes be used in place of the tensor to accelerate cost



Gauss-Newton Algorithm
§ ALS generally achieves linear convergence, while Newton-based methods
can converge quadratically



Gauss-Newton for CP Decomposition
§ CP decomposition for order d “ 3 tensors (d ą 3 is similar) minimizes



Gauss-Newton for CP Decomposition
§ A step of Gauss-Newton requires solving a linear system with H

u = []
for q in range(d):

u.append(zeros((n,R)))
for p in range(d):

if q == p:
u[q] += einsum("rz,kz->kr",G[q,p],v[p])

else:
u[q] += einsum("kz,lr,rz,lz->kr", \

U[q],U[p],G[q,p],v[p])



Matrix Sketching
Randomized methods provide accurate approximate solutions to linear least
squares problems, which can be applied to accelerate ALS, as well as more basic
problems



Random Projections
Accuracy of sketching techniques is theoretically characterized by statistical
analysis



Random Projections
The Johnson-Lindenstrauss lemma is a powerful tool for obtaining error bounds
in a projected vector space

SAx̂ – Sb



Matrix Sketching
The best choice of sketch matrix depends on the desired accuracy and the
structure of A



Matrix Sketching via Sampling
Uniform sampling of rows is insu�cient to obtain good accuracy in general

Leverage score sampling provides better accuracy guarantees



Mixing Techniques
To circumvent leverage score sampling, we can mix rows randomly Instead of

choosing elements of S randomly, pseudo-random distributions allow S to be
applied more rapidly



Approximate CP ALS using Random Sampling
§ Another approach to approximating ALS is to sample the least-squares
equations1

1C. Battaglino, G. Ballard, T. G. Kolda, 2018





Tensor Completion
§ The tensor completion problem seeks to build a model (e.g., CP
decomposition) for a partially-observed tensor

§ The problem was partially popularized by the Netflix prize collaborative
filtering problem



CP Tensor Completion Gradient and Hessian
§ The gradient of the tensor completion objective function is sparsified
according to the set of observed entries

§ ALS for tensor decomposition solves quadratic optimization problem for
each row of each factor matrix, in the completion case, Newton’s method on
these subproblems yields di�erent Hessians



Methods for CP Tensor Completion
§ ALS for tensor completion with CP decomposition incurs additional cost

§ Alternative methods for tensor completion include coordinate descent and
stochastic gradient descent



Coordinate Descent for CP Tensor Completion
§ Coordinate descent avoids the need to solve linear systems of equations







Sparse Tensor Contractions
§ Tensor completion and sparse tensor decomposition require operations on
sparse tensors

§ Sparse tensor contractions often correspond to products of hypersparse
matrices, i.e., matrices with mostly zero rows







Sparse Tensor Formats
§ The overhead of transposition, and non-standard nature of the arising
sparse matrix products, motivates sparse data structures for tensors that
are suitable for tensor contractions of interest

§ The compressed sparse fiber (CSF) format provides an e�ective
representation for sparse tensors



Operations in Compressed Format

§ CSF permits e�cient execution of important sparse tensor kernels
§ Analogous to CSR format, which enables e�cient implementation of the sparse

matrix vector product
§ where row[i] stores a list of column indices and nonzeros in the ith row of A

for i in range(n):
for (a_ij ,j) in row[i]:

y[i] += a_ij * x[j]

§ In CSF format, a multilinear function evaluation f pT qpx,yq “ Tp1qpx d yq can
be implemented as

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for (k,t_ijk) in T_ij:
z[i] += t_ijk * x[j] * y[k]



MTTKRP in Compressed Format
§ MTTKRP and CSF pose additional implementation opportunities and
challenges

§ MTTKRP uir “ ř
j,k tijkvjrwkr can be implemented by adding a loop over r to

our code for f pT q, but would then require 3mr operations if m is the number of
nonzeros in T , can reduce to 2mr by amortization

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for r in range(R):
f_ij = 0
for (k,t_ijk) in T_ij:

f_ij += t_ijk * w[k,r]
u[i,r] = f_ij * v[j,r]

§ However, this amortization is harder (requires storage or iteration overheads) if
the index i is a leaf node in the CSF tree

§ Similar challenges in achieving good reuse and obtaining good arithmetic
intensity arise in implementation of other kernels, such as TTMc





All-at-once Contraction

§ When working with sparse tensors, it is often more e�cient to contract
multiple operands in an all-at-once fashion



Constrained Tensor Decomposition

§ Many applications of tensor decomposition in data science, feature
additional structure, which can be enforced by constraints



Nonnegative Tensor Factorization

§ Nonnegative tensor factorization (NTF), such as CP decomposition with
T ě 0 and U ,V ,W ě 0 are widespread and a few classes of algorithms
have been developed



Nonnegative Matrix Factorization

§ NTF algorithms with alternating updates have a close correspondence with
alternating update algorithms for Nonnegative matrix factorization (NMF)



Coordinate Descent for NMF and NTF

§ Coordinate descent gives optimal closed-form updates for variables in NMF
and NTF



Generalized Tensor Decomposition
§ Aside from addition of constraints, the objective function may be modified by
using di�erent elementwise loss functions

§ Some loss function admit ALS-like algorithms, while others may require
gradient-based optimization


