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What's the problem? (Hint: Jump condition for constant density)
At corner xp: (2D)
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— non-continuous behavior of potential on I at xg

What space have we been living in?

Fixes:

e |/ + Bounded (Neumann) + Compact (Fredholm)



(\

K
~/




o Use [? theory
(point behavior “invisible™)

Numerically: Needs consideration, but ultimately easy to fix.



8.2 Helmholtz



Where does Helmholtz come from?

Derive the Helmholtz equation from the wave equation

02U = AU,




The prototypical Helmholtz BVP: A Scattering Problem
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Ansatz:

Solve for scattered field u.



Helmholtz: Some Physics

Physical quantities:
e Velocity potential: U(x, t) = u(x)e !
(fix phase by e.g. taking real part)
e Velocity: v =(1/po)VU
o Pressure: p = —0,U = iwue ™t

— Equation of state: p = f(p)

What's pg?

What happens to a pressure BC as w — 07




Helmholtz: Boundary Conditions

e Sound-soft: Pressure remains constant
— Scatterer “gives”
— u = f — Dirichlet
e Sound-hard: Pressure same on both sides of interface
— Scatterer “does not give"
— n-Vu=0 — Neumann
e Impedance: Some pressure translates into motion
— Scatterer “resists”
— - Vu+ ikAu =0 — Robin (A > 0)

e Sommerfeld radiation condition: allow only outgoing waves

or

(where n is the number of space dimensions)

5 (2_;k> u(x) 50 (r > ox)



Many interesting BCs — many IEs! :)

Transmission between media: What's continuous?




Unchanged from Laplace

Theorem 18 (Green,s Formula [Colton/Kress IAEST Thm 2.1]) If Au 4 k2U = O, then

u(x) xe D
(S(A-Vu) = Du)(x) = ¢ “ xedD
0 x & D
H(4)
[Su] =0 o (k- “)
. / / ]- /
Xlr;;i(S u) = (5 F 5/) (u)(x0) = [S'u] = —u
: 1
Xlr)gi(Du) = (D + 5/) (u)(x0) = [Du] = u
Why is singular behavior (esp. jump conditions) unchanged? ;L“, ql
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Why does Green's formula survive?
Remember Green's theorem:

/ ulAv — vAu = / u(h-Vv)—v(h-Vu)ds
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Resonances

—/\ on a bounded (interior) domain with homogeneous Dirichlet/Neumann BCs has
countably many real, positive eigenvalues.

What does that have to with Helmholtz?

Why could it cause grief?




Helmholtz: Boundary Value Problems

Find u € C(D) with Au+ k? = 0 such that

Dirichlet Neumann
Int. |limop u(x)=g [ 0 limeop-n-Vulx)=g _
Qunique (—resonances) Ounique (—resonances) J'i-f Y
Ext. | limy_op u(x) =g limy_op+ - Vu(x) =g
Sommerfeld I Sommerfeld L _g7
Qunique s Sunique 2

with g € C(9D).
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Find layer potential representations for each.
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Patching up resonances

Issue: Ext. IE inherits non-uniqueness from ‘adjoint’ int. BVP

Fix: Tweak representation [Brakhage/werner 65, ..]

(also called the ‘CFIE'-'combined field integral equation’)
u=D¢p—iaS¢p

(v tuning knob — 1 is fine, ~ k better for large k)
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How does this help?

Uniqueness for remaining IEs similar. (i)




8.3 Calderdn identities

Show that D’ is self adjoint.

| Show that (Sp, D) = ((S'+ 1/2)e, (D — 1/2)1)).
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Calderdn Identities: Summary

o SD'= D2 I/4
o D'S=57—-1/4

Also valid for Laplace (jump relation same after all!)

Why do we care?




9 Back from Infinity: Discretization

9.1 Fundamentals: Meshes, Functions, and Approximation



Numerics: What do we need?

e Discretize curves and surfaces
— Interpolation
— Grid management
— Adaptivity

Discretize densities

Discretize integral equations

— Nystrom, Collocation, Galerkin

Compute integrals on them
— “Smooth” quadrature
— Singular quadrature

Solve linear systems

Au-)
CQ w ¢ :(%4}7



Constructing Discrete Function Spaces

Floating point numbers —  Functions I((P ’/pt, //\( CL\

(Degrees of Freedom/DoFs)
%

A

Discretization relies on three things:
e Base/reference domain
e Basis of functions
e Meaning of DoFs

Related finite element concept: Ciarlet triple

Discretization options for a curve?




What do the DoFs mean?

Common DoF choices:
e Point values of function
e Point values of (directional?) derivatives
e Basis coefficients
e Moments

Often: useful to have both “modes”, “nodes”, jump back and forth



Why high order?

Order p: Error bounded as
lup — u| < ChP
Thought experiment:
First order Fifth order

>
@
1,000 DoFs ~ 1,000 triangles | 1,000 DoFs ~ 66 triangles
Error: 0.1 Error: 0.1 ( 7
Error: 0.01 — 7 Error: 0.01 — 7
(00,000 H\“AJQ»\

Complete the table.

Remarks: C/O\)
e Want p > 3 available.
e Assumption: Solution sufficiently smooth
e |deally: p chosen by user O




What is an Unstructured Mesh?

Why have an unstructured mesh?

What is the trade-off in going unstructured?




Fixed-order vs Spectral

Fixed-order Spectral
Number of DoFs n Number of DoFs n

Number of ‘elements’

Error ~ —
nP

Examples?
e Piecewise Polynomials

Number of modes resolved
Error ~ a

Examples?
e Global Fourier
e Global Orth.
mials

Polyno-

What assumptions are buried in each of these?

What should the DoFs be?




What's the difficulty with purely modal discretizations?




Vandermonde Matrices
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Generalized Vandermonde Matrices

Po(x0) P1(x0) ---
$o(x1) ¢1(.X1)

bo(xn) dr(x0) -

Pn(x0)
an(.xl)

@n(Xn)



Generalized Vandermonde Matrices

Po(x0) P1(x0) - Pnlxo)
¢o(.X1) ¢1(.X1) o ¢n(x1)

MODAL COEFFS = NODAL COEFFS

Po(Xn) Cbl(.xn) (ﬁ,,(.x,,)

Node placement?

Vandermonde conditioning?

What about multiple dimensions?




Common Operations

(Generalized) Vandermonde matrices simplify common operations:
e Modal <+ Nodal (“Global interpolation™)
— Filtering
— Up-/Oversampling

Point interpolation (Hint: solve using V'T)

Differentiation

Indefinite Integration

Inner product

Definite integration



