
Fast Algorithms and Integral Equation Methods CS598 APK

Andreas Kloeckner

Fall 2019

Outline

```
Introduction
Notes
Notes (unfilled, with empty boxes)
```

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problem

Back from Infinity: Discretizatio

Computing Integrals: Approaches to Quadratur

Going General: More PDEs

What's the point of this class?

- Starting point: Large-scale scientific computing
- Many popular numerical algorithms: $O(n^{\alpha})$ for $\alpha > 1$ (Think Matvec, Matmat, Gaussian Elimination, LU, ...)
- ▶ Build a set of tools that lets you cheat: Keep α small (Generally: probably not–Special purpose: possible!)
- Final goal: Extend this technology to yield PDE solvers
- But: Technology applies in many other situations
 - Many-body simulation
 - Stochastic Modeling
 - ► Image Processing
 - 'Data Science' (e.g. Graph Problems)
- This is class is about an even mix of math and computation

Survey

- ► Home dept
- Degree pursued
- ► Longest program ever written
 - ▶ in Python?
- ► Research area
- ► Interest in PDE solvers

Class web page

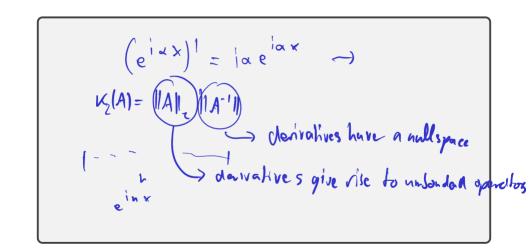
https://bit.ly/fastalg-f19

contains:

- ► Class outline
- Assignments
- Piazza
- ► Grading
- ▶ Video
- Interactive demos!

Why study this at all?

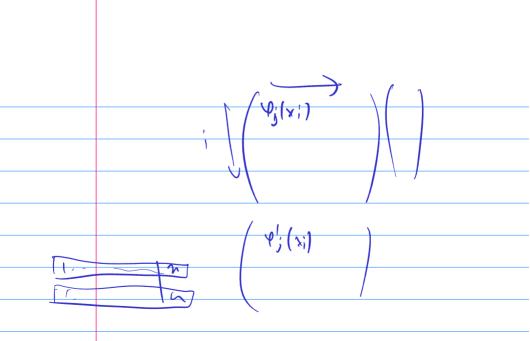
- Finite difference/element methods are inherently
 - ▶ ill-conditioned
 - tricky to get high accuracy with
- ▶ Build up a toolset that does *not* have these flaws
- Plus: An interesting/different analytical and computational point of view
 - ► If you're not going to use it to solve PDEs, it (or the ideas behind it) will still help you gain insight.

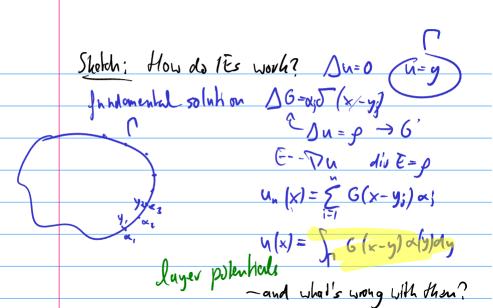

FD/FEM: Issues

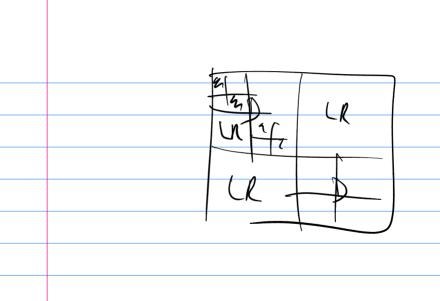
Idea of these methods:

- 1. Take differential equations
- 2. Discretize derivatives
- 3. Make linear system
- 4. Solve

So what's wrong with doing that?


Discretizing Derivatives: Issues?




Discretizing Derivatives: Issues?

Result: The better we discretize (the more points we use), the worse the condition number gets.					
Demo: Conditioning of Derivative Matrices					
To be fair: Multigrid works around that (by judiciously using fewer points!)					
But there's another issue that's not fixable.					
Q: Are these problems real?					

So this class is about starting fresh with methods that (rigorously!) don't have these flaws!

Bonus Advertising Goodie

Both multigrid degrees of freed	chemes ultim	ately are <i>O</i>	(N) in the	number of

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solve

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problem

Back from Infinity: Discretizatio

Computing Integrals: Approaches to Quadrature

Going General: More PDEs