

Matvec: A Slow Algorithm

Matrix-vector multiplication: our first 'slow' algorithm. $O(N^2)$ complexity.

$$\beta_i = \sum_{j=1}^N A_{ij} \alpha_j$$

Assume A dense.

Matrices and Point Interactions

$$A_{ij} = G(x_i, y_j)$$

Does that actually change anything?

$$\frac{\psi_{p}(x_{1})}{\psi_{p}(x_{1})} = \int_{y_{2}}^{y_{2}} G(x_{1}, y_{2}) \varphi(y_{3})$$

$$x_{1} \rightarrow \text{Targets} / Observation paints}$$

$$y_{2} \rightarrow \text{Sources}$$

$$G(x_{1}y_{3}) \rightarrow \text{Kernel}$$

Matrices and Point Interactions

$$A_{ij}=G(x_i,y_j)$$

Graphically, too:

Matrices and point Interactions

$$\Rightarrow \psi(x_f) = \sum_{j=1}^{N} G(x_f, y_j) \varphi(y_j)$$
This feels different.
$$\Rightarrow \psi(x_f) = \sum_{j=1}^{N} G(x_f, y_j) \varphi(y_j)$$

Q: Are there enough matrices that come from globally defined G to make this worth studying?

Point Interaction Matrices: Examples (I)

Interpolation:
$$\gamma(x) = \sum_{j=1}^{N} l_j(x), \gamma(y_j)$$
Interpolation
$$\gamma(x) = \gamma(x) - \sum_{j=1}^{N} l_j(x), \gamma(y_j)$$
Non diff.
$$\gamma(x) = \sum_{j=1}^{N} l_j(x), \gamma(y_j)$$

$$\gamma(x) = \sum_{j=1}^{N} l_j(x), \gamma(y_j)$$

$$|den h hy:$$

$$\varphi(x) = \int_{\mathbb{R}} \int_{(x-y)} \gamma(y) dy$$

$$\Xi_{i} = \left(A_{ij} + \Xi_{i}\right)$$

Point Interaction Matrices: Examples (II)

Point Interaction Matrices: Examples (III)

So yes, there are indeed lots of these things.

Integral Operators

Why did we go through the trouble of rephrasing matvecs as

$$\psi(x_i) = \sum_{j=1}^N G(x_i, y_j) \varphi(y_j)?$$

Cheaper Matvecs

$$\psi(x_i) = \sum_{j=1}^{N} G(x_i, y_j) \varphi(y_j)$$

So what can we do to make evaluating this cheaper?

Fast Dense Matvecs

Consider

$$A_{ij}=u_iv_j,$$

let $\mathbf{u} = (u_i)$ and $\mathbf{v} = (v_j)$.

Can we compute Ax quickly? (for a vector x)

Fast Dense Matvecs (II)

AE RUXN

$$A = \mathbf{u}_1 \mathbf{v}_1^T + \cdots + \mathbf{u}_k \mathbf{v}_k^T$$

Does this generalize? What is K here?

Low-Rank Point Interaction Matrices

Usable with low-rank complexity reduction?

$$\psi(x_i) = \sum_{i=1}^{N} G(x_i, y_j) \varphi(y_j)$$

Numerical Rank

What would a numerical generalization of 'rank' look like?

A has roub
$$L$$
 if $A \in \mathbb{R}^{n \times n}$
 $A = UV$
 $MU = kT$
 $MU =$

Eckart-Young-Mirsky Theorem

11A112= max | 0; 1/ NAL- (S. A.)

Theorem (Eckart-Young-Mirsky)

SVD
$$A = U\Sigma V^T$$
. If $k < r = \text{rank}(A)$ and

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T,$$

then

$$\min_{\text{rank}(B)=k} |A-B|_2 = |A-A_k|_2 = \sigma_{k+1}$$

$$(Q: \text{What's that error in the Frobenius norm?})$$

- So in principle that's good news:
 - ► We can find the numerical rank.
 - ▶ We can also find a factorization that reveals that rank (!)

Demo: Rank of a Potential Evaluation Matrix (Attempt 2)

Constructing a tool

There is still a slight downside, though.

Representation

Ax=6

Maa

What does all this have to do with (right-)preconditioning?

Representat	tion (in con	text)		

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra Low-Rank Approximation: Basics Low-Rank Approximation: Error Control Reducing Complexity

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problem

Back from Infinity: Discretizatio

Computing Integrals: Approaches to Quadratur

Going General: More PDEs

Rephrasing Low-Rank Approximations

SVD answers low-rank-approximation ('LRA') question. But: too expensive. First, rephrase the LRA problem:

Using LRA bases

AR QQTA

If we have an LRA basis Q, can we compute an SVD? Complex/hy B= UEVT =ODD A-0B= Q W EVT

Finding an LRA basis

How would we find an LRA basis?

Giving up optimality

What problem should we actually solve then?

$$||A - QQTA||_{2} = \min_{rank(X) \le h} ||A - X||_{2} = \sigma_{u+1}$$

$$||A - QQTA||_{2} = \min_{rank(X) \le h+p} ||A - X||_{2} = \sigma_{u+1}$$

Recap: The Power Method

How did the power method work again?					