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Matvec: A Slow Algorithm

Matrix-vector multiplication: our first ‘slow’ algorithm.
O(N?) complexity.
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Assume A dense.



Matrices and Point Interactions
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Does that actually change anything? Lcw
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Matrices and Point Interactions

A,'J' = G(X,',y_,')
Graphically, too:




Matrices and point Interactions
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This feels different. N (X) Sn G (!(. \ﬂ ‘p('j)
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Q: Are there enough matrices that come from globally defined G to make
this worth studying?



Point Interaction Matrices: Examples (I)
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Point Interaction Matrices: Examples (II)
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Point Interaction Matrices: Examples (l11)
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So yes, there are indeed lots of these things.



Integral Operators
Why did we go through the trouble of rephrasing matvecs as

N
= G(xi,y)e(y)?
j=1




Cheaper Matvecs

B(x) =Y Glxiy)ely))

Jj=1

So what can we do to make evaluating this cheaper?
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Fast Dense Matvecs

Consider
Ajj = ujvj,

let u = (uj) and v = (vj). A'\;\j\-

Can we compute Ax quickly? (for a vector x)

A= (B373 =0 (V)




Fast Dense Matvecs (I1)
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Does this generalize? What is K here?
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Low-Rank Point Interaction Matrices
Usable with low-rank complexity reduction?
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Numerical Rank

What would a numerical generalization of ‘rank’ look like?
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Eckart-Young-Mirsky Theorem ”Mf Max /0‘;/ | M[é« ,4,}
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Theorem (Eckart-Young-Mirsky)

SVD A= UZVT. If k < r = rank(A) and
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Q: What's that error in the Frobemus norm?
So in principle that's good news:

then

» We can find the numerical rank.
» We can also find a factorization that reveals that rank (!)
Demo: Rank of a Potential Evaluation Matrix (Attempt 2)



Constructing a tool

There is still a slight downside, though.
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Representation
g AN Me g

What does all this have to do with (right-)preconditioning?
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Representation (in context)




Outline

Tools for Low-Rank Linear Algebra
Low-Rank Approximation: Basics
Low-Rank Approximation: Error Control
Reducing Complexity



Rephrasing Low-Rank Approximations

SVD answers low-rank-approximation (‘LRA’) question. But: too
expensive. First, rephrase the LRA problem:
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Using LRA bases AI/\\/ QQ¢A

If we have an LRA basis @, can we compute an SVD? (ol Y/é’
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Finding an LRA basis

How would we find an LRA basis?
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Giving up optimality

What problem should we actually solve then?

A - QQ‘YA,/ = Mmin (A.x;/w =,
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Recap: The Power Method

How did the power method work again?




