Giving up optimality

What problem should we actually solve then?

Recap: The Power Method

How did the power method work again?

A diagonalizable will eigenvalue
$$\lambda_1$$
. λ_n and eig vec x_1 . X_n

$$|\lambda_1| > |\lambda_2| > \dots |\lambda_n| > 0$$

$$y = \alpha_1 \times_1 + \dots + \lambda_n$$

$$\lambda_1 = \alpha_1 \times_1 + \dots + \lambda_n$$

How do we construct the LRA basis?

Put randomness to work:

Tweaking the Range Finder (I)

Can we accelerate convergence?

Tweaking the Range Finder (II)

What is one possible issue with the power method?

Even Faster Matvecs for Range Finding

Assumptions on Ω are pretty weak—can use more or less anything we want. \to Make it so that we can apply the matvec $A\Omega$ in $O(n\log\ell)$ time. How? Pick Ω as a carefully-chosen subsampling of the Fourier transform.

Errors in Random Approximations

If we use the randomized range finder, how close do we get to the optimal answer?

Theorem

For an $m \times n$ matrix A, a target rank $k \ge 2$ and an oversampling parameter $p \ge 2$ with $k + p \le \min(m, n)$, with probability $1 - 6 \cdot p^{-p}$,

$$|A - QQ^TA|_2 \leqslant (1 + 11\sqrt{k + p}\sqrt{\min(m, n)}) \sigma_{k+1}.$$

(given a few more very mild assumptions on p)

[Halko/Tropp/Martinsson '10, 10.3]

Message: We can probably (!) get away with oversampling parameters as small as p=5.

A-posteriori and Adaptivity

The result on the previous slide was a-priori. Once we're done, can we find out 'how well it turned out'?

estimate
$$\|A-QQTA\|_2$$
 $E = (I-QQT)A$

We're interested in $O_1(E)$

read.veco with $\|\omega\|_2 = 1$

Use $\|E\|_2 \propto \frac{\|A\omega\|_1}{\|\omega\|_2}$

Adaptive Range Finding: Algorithm

- Compade a small ith	(R/A
- Check shell or it's OK	(by the esthution proc.)
- Too by? Continue	with more and vec.

Rank-revealing/pivoted QR

Sometimes the SVD is too good (aka expensive)—we may need less accuracy/weaker promises, for a significant decrease in cost.

A
$$= QR = Q(R_1, R_2)$$
where
$$R_1 \in R^{k \times k}$$

$$||R_1||_{L^{1}} \text{ is } ^k \text{ small}^k$$

$$Q^{\dagger}Q = ||R_1||_{L^{1}}$$

Using RRQR for LRA

G/VL ch.5

```
- Onto & Il Rzz IIz (it would bent the SVD)
- To precision Illalla, A has non routh k.
```

Interpolative Decomposition (ID): Definition

Would be helpful to know *columns of A* that contribute 'the most' to the rank.

(orthogonal transformation like in QR 'muddies the waters')

ID: Computation

How do we construct this (from RRQR): (short/fat case)

$$A\Pi = Q(Q_{\parallel} Q_{\square}) \qquad B = QQ_{\parallel} = A_{\{:,\}\}}$$

 \mathbb{Q} : What is P, in terms of the RRQR?

ID Q vs ID A

What does row selection mean for the LRA?

$$A \approx Q Q^{T} A$$

$$Q = P Q_{[\gamma_{i}]}$$

$$A_{(\gamma_{i})} = P_{(\gamma_{i})} Q_{[\gamma_{i}]} Q^{T} A$$

$$P A_{(\gamma_{i})} = P Q_{[\gamma_{i}]} Q^{T} A$$

[Martinsson, Rokhlin, Tygert '06]

ssen, remin, Tygert sej

Demo: Interpolative Decomposition

	mized tools have two stages:	
1. Find ON	IB of approximate range	
2. Do actu	al work only on approximate range	
Complexity?		
A / 1	mpact of the ID?	

ID-based Complexity Reduction

How can we reduce factorization complexity with the ID?		