

ID Q vs ID A

[Martinsson, Rokhlin, Tygert '06] ≈Q **Demo:** Interpolative Decomposition

- There is a slight tradeoff here--which?
- How do we use the ID in the context of low-rank range finding?

What does the ID buy us?

Name a property that the $\ensuremath{\mathsf{ID}}$ has over other factorizations.

All our randomized tools have two stages:

- 1. Find ONB of approximate range
- 2. Do actual work only on approximate range

Complexity?

What is the impact of the ID?

Ability to replace computing QFA with Asyri

ID-based Complexity Reduction

How can we reduce factorization complexity with the ID?

-Assume we have
$$P$$
 and J $Ax PA_{[J]:J}$.

$$(A_{CJ::J})^T = Q R$$

$$N \times K$$

$$N \times K$$

$$2 = P R^T$$

$$N \times K$$

$$N \times K$$

$$2 = U \times T$$

Nxh Nxh 6xh kxh

Leveraging the ID for SVD (II)

In what way does this give us an SVD of A?

Leveraging the ID for SVD (III)

Q: Why did we need to do the row QR?

Where are we now?

- We have observed that we can make matvecs faster if the matrix has low-ish numerical rank
- In particular, it seems as though if a matrix has low rank, there is no end to the shenanigans we can play.
- We have observed that some matrices we are interested in (in some cases) have low numerical rank (cf. the point potential example)
- We have developed a toolset that lets us obtain LRAs and do useful work (using SVD as a proxy for "useful work") in $O(N \cdot K^{\alpha})$ time (assuming availability of a cheap matvec).

Next stop: Get some insight into why these matrices have low rank in the first place, to perhaps help improve our machinery even further.

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness Local Expansions Multipole Expansions Rank Estimates Proxy Expansions

Near and Far: Separating out High-Rank Interaction

Outlook: Building a Fast PDE Solve

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problem

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Punchline

AMAMA

What do (numerical) rank and smoothness have to do with each other?

If alloutpuls of an openhous a short expansion in some basis, then that is a continuous aquivalent of "low rank".

Poly, Jonier, eightherions...

Even shorter punchline?

Smoothing Operators

If the operations you are considering are *smoothing*, you can expect to get a lot of mileage out of low-rank machinery.

What types of operations are smoothing?

Now: Consider some examples of smoothness, with justification.

How do we judge smoothness?

Recap: Multivariate Taylor

ID Tay lov:
$$\rho(c+h) \approx \sum_{p=0}^{k} \frac{1}{p!} \frac{1}$$

Taylor and Error (I)

How can we estimate the error in a Taylor expansion?

(go back to 10 for simplicity)
$$\left(p(c+h) - \sum_{p=0}^{k} \frac{f^{(p)}(c)}{p!} h^{p}\right) = \left(\sum_{p=kn}^{\infty} \frac{f^{(p)}(c)}{p!} h^{p}\right) = (f \text{ f andy } h)$$

Taylor and Error (II)

Now suppose that we had an estimate that $\left| \frac{f^{(p)}(c)}{p!} h^p \right| \leqslant \mathscr{P}$. \mathscr{P}

$$\left| \sum_{p=k+1}^{\infty} \frac{\int_{p}^{(p)}(c)}{p!} h^{p} \right| \leq \sum_{p=k+1}^{\infty} \left| \frac{\int_{p}^{(p)}(c)}{p!} h^{p} \right| = \sum_{p=k+1}^{\infty} \beta^{p} = \frac{1}{1-\beta} \cdot \beta^{k+1}$$
Useful for small enough

Connect Taylor and Low Rank

Can Taylor help us establish low rank of an interaction?								