Voday: HW2 - Cowrade / smooth fme. - Tuylor is 1 local exponsion multipole exponsion rank "expansions" using LA

Smoothing Operators

If the operations you are considering are <i>smoothing</i> , you can expect to get a lot of mileage out of low-rank machinery.
What types of operations are smoothing?
Now: Consider some examples of smoothness, with justification. How do we judge smoothness?

Recap: Multivariate Taylor

Taylor and Error (I)

How can we estimate the error in a Taylor expansion?	

Taylor and Error (II)

Now suppose that we had an estimate that $\left|\frac{f^{(p)}(c)}{p!}h^p\right| \leqslant \alpha^p$

Connect Taylor and Low Rank

Can Taylor help us establish low rank of an interaction?

$$\int (x) = \int (c+h) \approx \sum \frac{D^{\rho}(c)}{\rho!} h^{\rho}$$

$$= \sum (coeff) \cdot \varphi_{\rho}(h)$$

$$|p| \leq k$$

Taylor on Potentials (I)

Compute a Taylor expansion of a 2D Laplace point potential.

$$\psi(\vec{x}) = \sum_{i=1}^{n} G(\vec{x}, \vec{y}) \varphi(\vec{y}_i)$$

$$= \sum_{i=1}^{n} \log(||\vec{x} - \vec{y}||_{L}) \varphi(y_i)$$

$$= \sum_{i=1}^{n} \log(|\vec{x} - \vec{y}||_{L}) \varphi(y_i)$$

$$= \sum_{i=1}^{n} \log$$

Taylor on Potentials (Ia)

Why is it interesting to consider Taylor expansions of Laplace point potentials?

$$0: \frac{\kappa}{1}$$

Taylor on Potentials (II)

(%03)

(%i4)

$$\frac{1}{2} = \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{384}{\sqrt{1}}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

Taylor on Potentials (III)

Which of these is the most dangerous (largest) term? \rightarrow Hard to say. They all contain the same number of powers of components of y.

What's a bound on it? Let $R = \sqrt{y_1^2 + y_2^2}$.

$$\left| \frac{5040y_1}{(y_2^2 + y_1^2)^4} \right| \leqslant C \left| \frac{y_1}{R^8} \right| \leqslant C \frac{1}{R^7}.$$

'Generalize' this bound:

$$|D^p \psi| \leqslant C_p \begin{cases} \log(R) & |p| = 0 \\ R^{-|p|} & |p| > 0 \end{cases}.$$

Appears true at least from the few p we tried. (Actually is true.) C_p is a 'generic constant'-its value could change from one time it's written to the next.

Taylor on Potentials (IV)

What does this mean for the convergence of the Taylor series as a whole?

Taylor on Potentials (V)

Lesson: As long as

$$\frac{\max_i |\mathbf{x}_i - \mathbf{c}|_2}{\min_j |\mathbf{y}_j - \mathbf{c}|_2} = \frac{r}{R} < 1,$$

the Taylor series converges.

Taylor on Potentials (VI)

A few remarks:

- We have just invented one specific example of what we will call a *local* expansion (of a potential ψ).
- ▶ The abstract idea of a *local expansion* is that:
 - it converges on the interior of a ball as long as the closest source is outside that ball,
 - ► The error in approximating the potential by a truncated (at order *k*) local expansion is

$$C_p\left(\frac{r}{R}\right)^{k+1} = \left(\frac{\operatorname{dist}(\mathbf{c}, \operatorname{furthest target})}{\operatorname{dist}(\mathbf{c}, \operatorname{closest source})}\right)^{k+1}$$

Taylor on Potentials: Low Rank?

Connect this to the numerical rank observations:

Taylor on Potentials: Low Rank

Low numerical rank is no longer a numerically observed oddity, it's mathematical fact.

Away from the sources, point potentials are smooth enough that their Taylor series ('local expansions') decay quickly. As a result, the potential is well-approximated by truncating those expansions, leading to low rank.

Local expansions as a Computational Tool

Low rank makes evaluating interactions cheap(er). Do local expansions help with that goal?

Taylor on Potentials, Again

tyl x c

Stare at that Taylor formula again.

Deal
$$\rightarrow \gamma(x-y) = \sum_{|P| \leq R} \frac{D^{P} + (x-y)}{e!} x = c (x-c)^{P}$$

multipole $\rightarrow \gamma(x-y) = \sum_{|P| \leq R} \frac{D^{P} + (x-y)}{e!} y = c (y-c)^{P}$

Forget

Forget

Multipole Expansions (I)

At first sight, it doesn't look like much happened, but mathematically/geometrically, this is a very different animal.

First Q: When does this expansion converge?

$$\left| \frac{D^{\rho} + (x-y)}{\rho!} y \right|^{2} \leq \left(y-c \right)^{\rho} \leq \left(\frac{\|y-c\|_{2}}{\|x-c\|_{2}} \right)^{\rho}$$

$$\left| \left(\frac{\|y-c\|_{2}}{\|x-c\|_{2}} \right)^{\rho} + \frac{\|y-c\|_{2}}{\|x-c\|_{2}} \right)^{\rho}$$

$$\left| \left(\frac{\|y-c\|_{2}}{\|x-c\|_{2}} \right)^{\rho} + \frac{\|y-c\|_{2}}{\|x-c\|_{2}} \right)^{\rho}$$

$$\left| \left(\frac{\|y-c\|_{2}}{\|x-c\|_{2}} \right)^{\rho}$$

$$\left| \frac{\|y-c\|_{2}}{\|x-c\|_{2}} \right|$$

Multipole Expansions (II)

The abstract idea of a multipole expansion is that:

- ▶ it converges on the exterior of a ball as long as the furthest source is closer to the center than the closest target,
- The error in approximating the potential by a truncated (at order k) local expansion is

$$\left(\frac{\mathsf{dist}(\mathbf{c},\,\mathsf{furthest}\,\,\mathsf{source})}{\mathsf{dist}(\mathbf{c},\,\,\mathsf{closest}\,\,\mathsf{target})}\right)^{k+1}.$$

The multipole expansion converges everywhere outside the circle! (Possibly: slowly, if the targets are too close-but it does!)