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Smoothing Operators

If the operations you are considering are smoothing, you can expect to get
a lot of mileage out of low-rank machinery.

What types of operations are smoothing?

7

Now: Consider some examples of smoothness, with justification.
How do we judge smoothness?




Recap: Multivariate Taylor
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Taylor and Error (1)

How can we estimate the error in a Taylor expansion?




Taylor and Error (I1)

Now suppose that we had an estimate that

f(P)(C) "

N

aPf.




Connect Taylor and Low Rank

Can Taylor help us establish low rank of an interaction?
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Taylor on Potentials (1)

Compute a Taylor expansion of a 2D Laplace point potential.
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Taylor on Potentials (la)

Why is it interesting to consider Taylor expansions of Laplace point
potentials?
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Taylor on Potentials (I1) Js(ﬁl)

1,

o d(,
Maxima 5.42.1 http://maxima.sourceforge.net 8 — = -
(%i1) phiO: log(sqrt(yl**2 + y2*%2)); F v V‘L
2 2
oedz +diy 4 Ll
Gol) e y ™% T
2 il
(%i2) diff(phiO, y1);
i
Cho2) s
2 2
&2 + &1
(%i3) diff(phiO, y1, 5);
. 3
v 120k (230 v® 384 1
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Taylor on Potentials (III)

Which of these is the most dangerous (largest) term?
— Hard to say. They all contain the same number of powers of
components of y.

What's a bound on it? Let R = \/y? + y2.

5040y, Vi 1
I
‘()@2 +y2)4 R® R
‘Generalize’ this bound:
log(R =0
Dol < ¢, {PBR) 1pI=0
R=IPL|p| >0

Appears true at least from the few p we tried. (Actually is true.)
Cp is a ‘generic constant’—its value could change from one time it's written
to the next.



Taylor on Potentials (1V) 3[)(!\0)3 v?n (’dgb(y/

What does this mean for the convergence of the Taylor series as a whole?
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Taylor on Potentials (V)

Lesson: As long as
max; |x; — ¢ r
fiL4£:f<L

min; \yj — C|2 R

the Taylor series converges.



Taylor on Potentials (V1)

A few remarks:

> \We have just invented one specific example of what we will call a focal
expansion (of a potential v).

» The abstract idea of a local expansion is that:
» it converges on the interior of a ball as long as the closest source is
outside that ball,

» The error in approximating the potential by a truncated (at order k)
local expansion is

c (L)Hl _( dist(c, furthest target) kit
PAR ~ \_dist(c, closest source)



Taylor on Potentials: Low Rank?

Connect this to the numerical rank observations:
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Taylor on Potentials: Low Rank

Low numerical rank is no longer a numerically observed oddity, it's
mathematical fact.

Away from the sources, point potentials are smooth enough that their
Taylor series (‘local expansions’) decay quickly. As a result, the potential is
well-approximated by truncating those expansions, leading to low rank.



Local expansions as a Computational Tool

Low rank makes evaluating interactions cheap(er). Do local expansions
help with that goal?
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Taylor on Potentials, Again - /)

P18, ¢
Stare at that Taylor formula again.
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Multipole Expansions (1)

At first sight, it doesn't look like much happened, but
mathematically/geometrically, this is a very different animal.
First Q: When does this expansion converge?
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Multipole Expansions (1)

The abstract idea of a multipole expansion is that:
» it converges on the exterior of a ball as long as the furthest source is
closer to the center than the closest target,
» The error in approximating the potential by a truncated (at order k)
local expansion is

dist(c, furthest source) ™
dist(c, closest target) '

The multipole expansion converges everywhere outside the circle!
(Possibly: slowly, if the targets are too close-but it does!)



