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Taylor on Potentials, Again

Stare at that Taylor formula again.
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Multipole Expansions (I)

At first sight, it doesn't look like much happened, but
mathematically/geometrically, this is a very different animal.
First Q: When does this expansion converge?

‘“‘*) Fuvthes) aré) o

€ in Miple asp | < Q
r d( ¢ Jows}f hfjl




Multipole Expansions (1)

The abstract idea of a multipole expansion is that:
» it converges on the exterior of a ball as long as the furthest source is
closer to the center than the closest target,
» The error in approximating the potential by a truncated (at order k)
local expansion is

dist(c, furthest source) ™
dist(c, closest target) '

The multipole expansion converges everywhere outside the circle!
(Possibly: slowly, if the targets are too close-but it does!)
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Multipole Expansions (I11)

If our particle distribution is like in the figure, then a multipole expansion is
a computationally useful thing. If we set // .

» S = #sources,

> T = Fttargets, / @

» K = #fterms in expansion,

\
)

then the cost without the expansion is O(jT), whereas th‘e/cost with the
expansion is O(SK + KT). (& %
If K< S, T, then that's going from O(N?) to O(N).

The rank (#terms) of the multipole expansion is the same as above for the
local expansion.

Demo: Multipole/local expansions



Taylor on Potentials: Low Rank?

Connect this to the numerical rank observations:
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On Rank Estimates

So how many terms do we need for a given precision £?
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Demo: Checking rank estimates
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Estimated vs Actual Rank

Our rank estimate was off by a power of loge. What gives?
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Taylor and PDEs

Look at 392G and 8§G in the multipole demo again. Notice anything?
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Being Clever about Expansions

How could one be clever about expansions? (i.e. give

examples)
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Expansions for @W ATRE) Avslctin=0
How do expansions for other PDEs arise? (b H\;.
b sog. of vwickler in Polor colicels
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DLMF 10.23.6 shows ‘Graf’s addition theorem’:
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singular nonsingular
where 0 = Z(x — ¢) and ' = Z(x' — ¢).

Can apply same family of tricks as with Taylor to derive multipole/local
expansions.



Making Multipole/Local Expansions using Linear Algebra

Actual expansions cheaper than LA approaches. Can this be fixed?

Compare costs for this situation:
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The Proxy Trick

Idea: Skeletonization using Proxies
Demo: Skeletonization using Proxies

Q: What error do we expect from the proxy-based multipole/local
‘expansions’ ?




