

Weakly singular

 $G \subset \mathbb{R}^n$ compact

Definition (Weakly singular kernel)

- \triangleright K defined, continuous everywhere except at x=y
- ▶ There exist C > 0, $\alpha \in (0, n]$ such that

$$|K(x,y)| \le C|x-y|^{\alpha-n} \qquad (x \ne y)$$

Theorem (Weakly singular kernel \Rightarrow compact [Kress LIE 2nd ed. Thm. 2.22])

K weakly singular. Then

$$(A\phi)(x) := \int_G K(x,y)\phi(y)dy.$$

is compact on C(G).

Weakly singular: Proof Outline

Outline the proof of 'Weakly singular kernel \Rightarrow compact'.					

Weakly singular (on surfaces)

 $\Omega\subset\mathbb{R}^n$ bounded, open, $\mathbb{Z} o \hat{\Omega} \in C'$

Definition (Weakly singular kernel (on a surface))

- ightharpoonup K defined, continuous everywhere except at x=y
- ▶ There exist C > 0, $\alpha \in (0, n-1]$ such that

$$|K(x,y)| \le C|x-y|^{\alpha-n+1}$$
 $(x,y \in \partial\Omega, x \ne y)$

Theorem (Weakly singular kernel \Rightarrow compact [Kress LIE 2nd ed. Thm. 2.23])

K weakly singular on $\partial\Omega$. Then $(A\phi)(x):=\int_{\partial\Omega}K(x,y)\phi(y)dy$ is compact on $C(\partial\Omega)$.

Riesz Theory (I)

Still trying to solve

$$L\phi := (I - A)\phi = \phi - A\phi = f$$

with A compact.

Theorem (First Riesz Theorem [Kress, Thm. 3.1])

N(L) is finite-dimensional.

Questions:

- \triangleright What is N(L) again?
- ► Why is this good news?

Riesz First Theorem: Proof Outline

Show it.		

Riesz Theory (II)

Theorem (Riesz theory [Kress, Thm. 3.4])

A compact. Then:

- \blacktriangleright (I-A) injective \Leftrightarrow (I-A) surjective \frown
 - lt's either bijective or neither s nor i.
- ▶ If(I-A) is bijective, $(A-A)^{-1}$ is bounded. ←

Rephrase for solvability:

Key shortcoming?

Suppose
$$C^{-1}$$
 umbon do 1 , then $\int_{\Gamma} \int_{\Gamma} ||f_n|| = 1$, $||C'f_n|| > h$

$$g_n = \frac{\int_{\Gamma} \int_{\Gamma} ||f_n||}{||C'f_n||} = \frac{||f_n|| + ||f_n||}{||C'f_n||} = \frac{||f_n|| + ||f_n||}{||C'f_n||} = \frac{||f_n|| + ||f_n||}{||f_n||} = \frac{||f_n||}{||f_n||} = \frac{||f_n|| + ||f_n||}{||f_n||} = \frac{||f_n||}{||f_n||} = \frac{||f_n||}{||f_n||}$$

P. = () (4 = 9 h

$$\begin{aligned}
\varphi_{n}(u) - A \varphi_{n}(u) &= g_{n}(u) \rightarrow 0 \\
\varphi_{n}(u) - A \varphi_{n}(u) &= g_{n}(u) \rightarrow 0
\end{aligned}$$

$$\begin{aligned}
\varphi_{n}(u) - A \varphi_{n}(u) &= g_{n}(u) \rightarrow 0 \\
\varphi_{n}(u) - A \varphi_{n}(u) &= g_{n}(u) \rightarrow 0
\end{aligned}$$

Hilbert spaces

Hilbert space: Banach space with a norm coming from an inner product:

$$(\alpha x + \beta y, z) =?$$

$$(x, \alpha y + \beta z) =?$$

$$(x, x) = ||x||$$

$$(y, x) =?$$
Is $C^0(G)$ a Hilbert space?

Name a Hilbert space of functions.

Continuous and Square-Integrable

Is
$$C^0(G)$$
 "equivalent" to $L^2(G)$? $|(f,f)| \leq ||f||_{\infty}$

Why do compactness results transfer over nonetheless? Hint: What is

$$|(x,y)| \leq ||x|| / |y||$$

Adjoint Operators

Definition (Adjoint opprator)

 A^* called adjoint to A if

$$(Ax,y)=(x,A^*y)$$

for all x, y.

Facts:

- ► A* unique
- ► A* exists
- ► A* linear
- ightharpoonup A bounded $\Rightarrow A^*$ bounded
- ightharpoonup A compact $\Rightarrow A^*$ compact

Adjoint Operator: Observations?

What is the adjoint operator in finite dimensions? (in matrix representation)

What do you expect to happen with integral operators?

swap targets and sources
$$P(x) = \int K(x, y) \circ (y) dy$$

Adjoint of the single-layer?

Adjoint of the double-layer?

Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE 2nd ed. Thm. 4.14])

 $A: X \rightarrow X$ compact. Then either:

- ► I A and I A* are bijective ← or:
- $(I-A)(X) = N(I-A^*)^{\perp}$
- $(I A^*)(X) = N(I A)^{\perp}$

$$(1-A)^* = 1-A^*$$

Seen these statements before?

Fundamental & hm. of linoa, algebra

Fundamental Theorem of Linear Algebra

Fredholm Alternative in IE terms

Translate to language of integral equation solvability:

If
$$\gamma = A = 0 \Rightarrow \gamma = 0 \Rightarrow \gamma = A = \beta$$
 has a unique sola.

$$\gamma(x) = \beta(x) = \beta(x) \quad \text{is solvable iff}$$

$$\beta = \gamma + \text{for all solutions } \gamma = 0$$

$$\gamma(x) = \beta(x) = 0$$

$$(1-A)(x) = N(1-A^*)^{\perp}$$

Fredholm Alternative: Further Thoughts

What about symmetric kernels (K(x, y) = K(y, x))?

Where to get uniqueness?

Spectral Theory: Terminology

 $A: X \to X$ bounded, λ is a . . . value:

Definition (Eigenvalue)

There exists an element $\phi \in X$, $\phi \neq 0$ with $A\phi = \lambda \phi$.

Definition (Regular value)

The "resolvent" $(\lambda I - A)^{-1}$ exists and is bounded.

Can a value be regular and "eigen" at the same time?

What's special about ∞ -dim here?

Resolvent Set and Spectrum

Definition (Resolvent set)

$$\rho(A) := \{\lambda \text{ is regular}\}$$

Definition (Spectrum)

$$\sigma(A) := \mathbb{C} \setminus \rho(A)$$

Spectral Theory of Compact Operators

Theorem

 $A: X \to X$ compact linear operator, $X \times -dim$.

Then:

- $ightharpoonup 0 \in \sigma(A) \ (show!)$
- $ightharpoonup \sigma(A) \setminus \{0\}$ consists only of eigenvalues
- $ightharpoonup \sigma(A) \setminus \{0\}$ is at most countable
- $ightharpoonup \sigma(A)$ has no accumulation point except for 0

Spectral Theory of Compact Operators: Proofs

Show first part.		
Show second part.		