Today	Announce ments
- Exh pirichled	- Projects/presentations
- Pongins w/ [J , , ,
- Helmholte	

Uniqueness of Integral Equation Solutions

Theorem (Nullspaces [Kress LIE 2nd ed. Thm 6.20])

- $N(I/2 D) = N(I/2 S') = \{0\}$
- $N(I/2 + D) = \operatorname{pan}\{1\}, \ N(I/2 + S') = \operatorname{span}\{\psi\},$ where $\int \psi \neq 0$.

IE Uniqueness: Proofs (1/3)

Show
$$N(I/2-D)=\{0\}.$$

IE Uniqueness: Proofs (2/3)

Show
$$N(I/2 - S') = \{0\}.$$

IE Uniqueness: Proofs (3/3)Show $N(I/2 + D) = span\{1\}$.

What conditions on the RHS do we get for int. Neumann and ext. Dirichlet?

 \rightarrow "Clean" Existence for 3 out of 4.

Do(x) = Sal n. Dy G(x,y) o(y) dy + Sal 1x1m2 olyly

Patching up Exterior Dirichlet

Problem: $N(I/2 + S') = \{\psi\}$... do not know ψ . Use different kernel:

$$\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- ▶ 2D behavior? 3D behavior?
- Still a solution of the PDE? Compact?
- ightharpoonup Jump condition? Exterior limit? Deduce u=0 on exterior.
 - ightharpoonup Consider $\partial_n G = O(1/r^{n-1})$.
- ► $(x|^{n-2}u(x)) = ?$ as $|x| \to \infty$? ► Thus $\int \phi = 0$. Contribution of the second term?
- lacktriangledown $\phi/2+D\phi=0$, i.e. $\phi\in N(I/2+D)=3pan$
- Existence/uniqueness?
- \rightarrow Existence for 4 out of 4.

Domains with Corners

What's the problem? (Hint: Jump condition for constant density)

Domains with Corners (II)

At corner x_0 : (2D)

$$\lim_{x \to x_0 \pm} = \int_{\partial \Omega} \hat{n} \cdot \nabla_y G(x, y) \phi(y) ds_y \pm \frac{1}{2} \frac{\langle \text{opening angle on } \pm \text{ side} \rangle}{\pi} \phi$$

 \rightarrow non-continuous behavior of potential on Γ at x_0 What space have we been living in? Fixes:

Numerically: Needs consideration, can drive up cost through refinement.

Where does Helmholtz come from?

((+,×,y)

Derive the Helmholtz equation from the wave equation $\partial_t^2 U = c^2 \triangle U$,. Q:

What is c?

$$U(x_1f) = e^{-i\omega t} u(x)$$

$$u(x) = e^{-i\omega t} = e^{-i\omega t} \Delta u$$

$$u(x) = e^{-i\omega t} = e^{-i\omega t} \Delta u$$

$$u(x) = e^{-i\omega t} = e^{-i\omega t} \Delta u$$

$$u(x) = e^{-i\omega t} \Delta u$$

Helmholtz vs. Yukawa

Helmholtz Equation

- $ightharpoonup \triangle u + k^2 u(x) = 0$
- ► Indefinite operator
- Oscillatory solution
- ▶ Difficult to solve, especially for large k

Yukawa Equation

- $-\triangle u \oplus k^2 u(x) = 0$
- ► Positive definite operator
- Smooth solutions
- 'Screened Coulomb' interaction
- ► Generally quite simple to solve

Helmholtz vs. Yukawa

Helmholtz Equation

- ► Indefinite operator
- ► Oscillatory solution
- Difficult to solve, especially for large k

Yukawa Equation

- $-\triangle u + k^2 u(x) = 0$
- ► Positive definite operator
- Smooth solutions
- 'Screened Coulomb' interaction
- ► Generally quite simple to solve

The prototypical Helmholtz BVP: A Scattering Problem

Ansatz:

Solve for scattered field u.

Helmholtz: Some Physics

Colton/Kress

Physical quantities:

- Velocity potential: $U(x,t) = u(x)e^{-i\omega t}$ (fix phase by e.g. taking real part)
- ▶ Velocity: $v \neq (1/\underline{\rho_0})\nabla U$
- Pressure: $p = \underbrace{-\partial_t U}_{i\omega} = i\omega u e^{-i\omega t}$
 - **Equation** of state: $p = f(\rho)$

sound-hard*
sound-softh

What's ρ_0 ?

donsity about which we've lineatized

What happens to a pressure BC as $\omega \to 0$?

Helmholtz: Boundary Conditions

Interfaces between media: What's continuous?

- ► Sound-soft: Scatterer "gives"
 - Pressure remains constant in time
 - $u = f \rightarrow \text{Dirichlet}$
- ► Sound-hard: Scatterer "does not give"
 - Pressure varies, same on both sides of interface
 - $\hat{n} \cdot \nabla u = 0 \rightarrow \text{Neumann}$
- ▶ Impedance: Some pressure translates into motion
 - Scatterer "resists"
 - $\hat{n} \cdot \nabla u + ik\lambda u = 0 \rightarrow \text{Robin } (\lambda > 0)$
- ► Sommerfeld radiation condition: allow only outgoing waves (n-dim)

$$r^{\frac{n-1}{2}} \left(\frac{\partial}{\partial r} - ik \right) u(x) \to 0 \qquad (r \to \infty)$$

Many interesting BCs \rightarrow many IEs! :)

$$O=\left(\partial_{t}^{2}-\partial_{x}^{2}\right)n=\left(\partial_{t}-\partial_{x}\right)\left(\partial_{t}+\partial_{x}\right)n$$

$$\left(\partial_{t}-\partial_{x}^{2}\right)n=0 \quad \text{advection}$$

4(x,t)~~(++x)

Unchanged from Laplace

Theorem (Green's Formula [Colton/Kress IAEST Thm 2.1])

If
$$\triangle u + k^2 u = 0$$
, then

$$(S(\hat{n} \cdot \nabla u) - Du)(x) = \begin{cases} u(x) & x \in D \\ \frac{u(x)}{2} & x \in \partial D \\ 0 & x \notin D \end{cases}$$

$$[Su] = 0$$

$$\lim_{x \to x_0 \pm} (S'u) = \left(S' \mp \frac{1}{2}I\right)(u)(x_0) \quad \Rightarrow \quad [S'u] = -u$$

$$\lim_{x \to x_0 \pm} (Du) = \left(D \pm \frac{1}{2}I\right)(u)(x_0) \quad \Rightarrow \quad [Du] = u$$

$$[D'u] = 0$$

Unchanged from Laplace

Why is singular behavior (esp. jump conditions) unchanged?

Why does Green's formula survive?

$$\sum_{n} \Delta v - v \Delta n = \sum_{n} v(n, \nabla v) - v(n, \nabla u)$$

Resonances

$$\begin{array}{ccc}
\sum_{\lambda} \Delta_{\lambda} v &=& \sum_{\lambda} \Delta_{\lambda} \\
\sum_{\lambda} \Delta_{\lambda} v &=& \sum_{\lambda} \Delta_{\lambda} \Delta_{\lambda}
\end{array}$$

 $-\triangle$ on a bounded (interior) domain with homogeneous Dirichlet/Neumann BCs has countably many real, positive eigenvalues.

What does that have to with Helmholtz?

$$\frac{-\Delta u = \lambda u}{\Delta u + k^2 u = 0}$$
 (\$>0)

Why could it cause grief?

Helmholtz: Boundary Value Problems

Find $u \in \mathcal{C}(D)$ with $ riangle u + k^2 = 0$ such that		
	Dirichlet	Neumann
Int.	$\lim_{x \to \partial D^-} u(x) = g$ $\bigcirc \text{ unique } (-\text{resonances})$	$\lim_{x \to \partial D^{-}} \hat{n} \cdot \nabla u(x) = g$ Ounique (-resonances)
	unique (—resonances)	Ounique (−resonances)
Ext.	$\lim_{x o\partial D+}u(x)=g$ Sommerfeld	$\lim_{x \to \partial D+} \hat{n} \cdot \nabla u(x) = g$
	Sommerfeld	Sommerfeld
	⊕ unique	unique
with $\sigma \in C(\partial D)$		

Find layer potential representations for each.

Patching up resonances

Issue: Ext. IE inherits non-uniqueness from 'adjoint' int. BVP

Fix: Tweak representation [Brakhage/Werner '65, ...] (also called the CFIE or combined field integral equation)

$$u = D\phi + i\alpha S\phi$$

 $(\alpha: \mathsf{tuning} \; \mathsf{knob} \to 1 \; \mathsf{is} \; \mathsf{fine}, \; \sim k \; \mathsf{better} \; \mathsf{for} \; \mathsf{large} \; k)$