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Nystrém Discretizations (I)
Nystrom consists of two distinct steps: VT
1. Approximate integral by qu?jrature: WY Z -0

— go,, Zkaxyk ) f(x) (1)
2. Evaluate quadrature'd |IE at quadrature nodes, solve discrete system
@— S wiK (g, vi)el” = () (2)
k=1
with ©)=()and o = @a(x)) = gn(y))

Is version (1) solvable?
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Nystrém Discretizations (I1)
What's special about (2)7

he con hiau 0%y

Solution density also only known at point values. But: can get
approximate continuous density. How?

"P:(A/s f(ng .-

Assuming the IE comes from a BVP. Do we also only get the BVP solution
at discrete points?
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Nystrém Discretizations (I11)

Does (1) = (2) hold?

Sure

Does (2) = (1) hold?
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Nystrém Discretizations (1V)

What good does that do us?

l/:p’—m::\//w hartt Lo eval {an /vl volues
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Does Nystrom work for first-kind 1Es?
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Convergence for Nystrém

Increase number of quadrature points n:

Get sequence (A,)
Want A, — A in some sense
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What senses of convergence are there for sequences of functions £,7?
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What senses of convergence are there for sequences of operators A,?
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Convergence for Nystrém (1) 4 (7¢ ]=0

Will we get norm convergence ||A, — A|loc — 0 for Nystrom?
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Is functionwise convergence good enough?
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Compactness-Based Convergence

X Banach space (think: of functions)

Theorem (Not-quite-norm convergence [Kress LIE 2nd ed. Cor 10.4])

A, : X — X bounded linear operators,
functionwise convergent to A: X — X
Then convergence is uniform on compact subsets U C X, i.e.

sup |[Anp — Agl| — 0 (n — o0)
pelU

How is this different from norm convergence? “A“ // cC

O\/\\l\b oW & Qme\cl/sJ/




Collective Compactness

Set A of operators A: X — X

Definition (Collectively compact)

A is called collectively compact if and only if
for U C X bounded, A(U) is relatively compact.

What was relative compactness (=precompactness)?
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Collective Compactness: Questions (1/2)

Is each operator in the set A compact?

ges

Is collective compactness the same as “every operator in A is compact™?
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Collective Compactness: Questions (2/2)

When is a sequence collectively compact?

W ew sof. o sel v

Is the limit operator of such a sequence compact?

/

How can we use the two together?




Making use of Collective Compactness

X Banach space, A, : X — X, (A,) collectively compact, A, — A
functionwise.

Corollary (Post-compact convergence [Kress LIE 2nd ed. Cor 10.8])

> [[(An — A)A| =0
> [[(An — A)As|| =0
(n— o0)



Anselone’s Theorem 0-4) N
Assume:
(I — A)7! exists, with A: X — X compact, (A,) : X — X collectively
compact and A, — A functionwise.

Theorem (Nystrom error estimate [Kress LIE 2nd ed. Thm 10.9])

For sufficiently large n, (I — Ap) is invertible and

160 = oIl < C(II(An = A)oll + [I£2 — £1])

1+ [(/ = A A

C =
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