

Announce ments

- unstructured most demo

- Project - HW4

- 1/A - An 1/ > 0 ~ Anyelone's theorem

Nyström Discretizations (1)

Nyström consists of two distinct steps:

1. Approximate integral by quadrature:

rate integral by quadrature:
$$\varphi_n(x) - \sum_{k=1}^n \omega_k K(x, y_k) \varphi_n(y_k) = f(x)$$
(1)

2. Evaluate quadrature'd IE at quadrature nodes, solve discrete system

$$\widehat{\varphi_j^{(n)}} - \sum_{k=1}^n \omega_k K(x_j, y_k) \varphi_k^{(n)} = f(x_j)$$
(2)

with
$$(j) = (y_j)$$
 and $\varphi_j^{(n)} = \varphi_n(x_j) = \varphi_n(y_j)$

Is version (1) solvable?

Nyström Discretizations (II)

What's special about (2)?

Solution density also only known at point values. But: can get approximate continuous density. How?

Assuming the IE comes from a BVP. Do we also only get the BVP solution at discrete points?

Nyström Discretizations (III)

Does $(1) \Rightarrow (2)$ hold?

Shre

Does (2) \Rightarrow (1) hold?

It you've chosen & to be the Nyshoom inhupstant,

Nyström Discretizations (IV)

What good does that do us?

Does Nyström work for first-kind IEs?

A v=f no; no Nyskoom interpolats

Convergence for Nyström

Increase number of quadrature points n:

Get sequence (A_n)

Want $A_n \to A$ in some sense

What senses of convergence are there for sequences of functions f_n ?

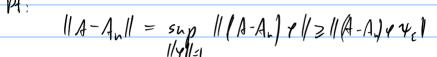
What senses of convergence are there for sequences of operators A_n ?

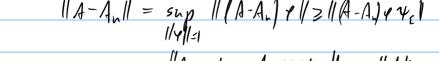
enough

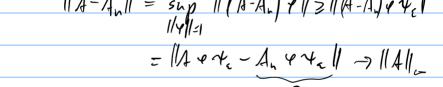
Convergence for Nyström (II) $A_{n}(\varphi Y_{\varepsilon}) = 0$

Will we get norm convergence $||A_n - A||_{\infty} \to 0$ for Nyström?

Is functionwise convergence good enough?







Compactness-Based Convergence

X Banach space (think: of functions)

Theorem (Not-quite-norm convergence [Kress LIE 2nd ed. Cor 10.4])

 $A_n: X \to X$ bounded linear operators, functionwise convergent to $A: X \to X$

Then convergence is uniform on compact subsets $U \subset X$, i.e.

$$\sup_{\phi \in U} \|A_n \phi - A\phi\| \to 0 \qquad (n \to \infty)$$

How is this different from norm convergence? $\|A_{\mathbf{k}}\| \leq C$

Collective Compactness

Set \mathcal{A} of operators $A:X\to X$

Definition (Collectively compact)

 \mathcal{A} is called *collectively compact* if and only if for $U \subset X$ bounded, $\mathcal{A}(U)$ is relatively compact.

What was relative compactness (=precompactness)?

Collective Compactness: Questions (1/2)

Is each operator in the set ${\cal A}$ compact?

903

Is collective compactness the same as "every operator in ${\mathcal A}$ is compact"?

hο,

Collective Compactness: Questions (2/2)

When is a sequence collectively compact?
view soy, as set v
Is the limit operator of such a sequence compact?
How can we use the two together?

Making use of Collective Compactness

X Banach space, $A_n: X \to X$, (A_n) collectively compact, $A_n \to A$ functionwise.

Corollary (Post-compact convergence [Kress LIE 2nd ed. Cor 10.8])

- $||(A_n-A)A|| \rightarrow 0$
- $\|(A_n A)A_n\| \to 0$ $(n \to \infty)$

Anselone's Theorem

Assume:

 $(I-A)^{-1}$ exists, with $A:X\to X$ compact, $(A_n):X\to X$ collectively compact and $A_n\to A$ functionwise.

Theorem (Nyström error estimate [Kress LIE 2nd ed. Thm 10.9])

For sufficiently large n, $(I - A_n)$ is invertible and

$$\|\phi_n - \phi\| \le C(\|(A_n - A)\phi\| + \|f_n - f\|)$$

$$C = \frac{1 + \|(I - A)^{-1}A_n\|}{1 - \|(I - A)^{-1}(A_n - A)A_n\|}$$

$$I + (I - A)^{-1}A = ?$$