Construct a matrix that takes a (first) centered difference of a periodic function on $[0,1]$. Call that matrix D
.
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
npts = 100
x = np.linspace(0, 1, npts, endpoint=False)
h = x[1] - x[0]
D = (
np.roll(np.diag(np.ones(npts)), -1, axis=0)
-
np.roll(np.diag(np.ones(npts)), 1, axis=0)
)/(2*h)
D
array([[ 0., 50., 0., ..., 0., 0., -50.], [-50., 0., 50., ..., 0., 0., 0.], [ 0., -50., 0., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 0., 50., 0.], [ 0., 0., 0., ..., -50., 0., 50.], [ 50., 0., 0., ..., 0., -50., 0.]])
Or: an alternate matrix that's based on a global polynomial
a = np.arange(npts, dtype=np.float64)
# Chebyshev nodes
nodes = np.cos((2*(a+1)-1)/(2*npts)*np.pi)
x = nodes
Vdm = np.empty((npts, npts))
Vdm_deriv = np.zeros((npts, npts))
for i in range(npts):
Vdm[:, i] = np.cos(i*np.arccos(x))
Vdm_deriv[:, i] = (i*np.sin(i*np.arccos(x)))/np.sqrt(1-x**2)
D = Vdm_deriv @ la.inv(Vdm)
Test that the matrix actually takes derivatives:
alpha = 3
f = np.sin(alpha * 2*np.pi*x)
df = alpha*2*np.pi*np.cos(alpha * 2*np.pi*x)
print(la.norm(df - D@f, np.inf))
0.111424462966
plt.plot(x, D@f- df)
plt.plot(x, df)
[<matplotlib.lines.Line2D at 0x7feddbf12278>]
Investigate the norm of this matrix.
la.norm(D, np.inf)
100.0
What function gets amplified like that?
amp_func = np.ones(npts)
amp_func[2::4] = -1
amp_func[3::4] = -1
la.norm(D@amp_func, np.inf)
100.0
plt.plot(amp_func)
plt.plot(D@amp_func)
[<matplotlib.lines.Line2D at 0x7fede076bba8>]
Now, what's the conditioning of this matrix like?
la.cond(D)
2.0564138575587231e+18
OK, this may not be completely fair. But: can look at the spectrum:
eigv = la.eigvals(D)
plt.plot(eigv.real, eigv.imag, "o")
plt.xlim([-2, 2])
#plt.ylim([-2, 2])
plt.grid()