


(Recursive) Coordinate Bisection (RCB)

Left Right

146



Block-separable matrices

A =




D1 A12 A13 A14
A21 D2 A23 A24
A31 A32 D3 A34
A41 A42 A43 D4




where Aij has low rank: How to capture rank structure?

147



Proxy Recap

Saw: If A comes from a kernel for which Green’s formula holds, then the
same skeleton will work for all of space, for a given set of sources/targets.
What would the resulting matrix look like?

148



Rank and Proxies

Unlike FMMs, partitions here do not include “buffer” zones of near
elements. What are the consequences?

149



Block-Separable Matrices

A block-separable matrix looks like this:

A =




D1 P1Ã12Π2 P1Ã13Π3 P1Ã14Π4

P2Ã21Π1 D2 P2Ã23Π3 P2Ã24Π4

P3Ã31Π1 P3Ã32Π2 D3 P3Ã34Π4

P4Ã41Π1 P4Ã42Π2 P4Ã43Π3 D4




Here:
▶ Ãij smaller than Aij

▶ Di has full rank (not necessarily diagonal)
▶ Pi shared for entire row
▶ Πi shared for entire column

150



Block-Separable Matrix: Questions

Q: Why is it called that?

Q: How expensive is a matvec?

Q: How about a solve?

151



BSS Solve (I)
Separate out ’coarse’ unknowns. Use the following notation:

B =




0 P1Ã12 P1Ã13 P1Ã14

P2Ã21 0 P2Ã23 P2Ã24

P3Ã31 P3Ã32 0 P3Ã34

P4Ã41 P4Ã42 P4Ã43 0




and

D =




D1
D2

D3
D4


 , Π =




Π1
Π2

Π3
Π4


 .

152



BSS Solve (II)
Q: What are the matrix sizes? The vector lengths of x and x̃?

Now work towards doing just a ‘coarse’ solve on x̃ , using the Schur
complement:

153



BSS Solve (III)
Focus in on the second row:

(Id+ΠD−1B)ex = ΠD−1b

Every non-zero (i.e. off-diagonal) entry in ΠD−1B looks like

Define a diagonal entry:

154



BSS Solve (IV)

Next, left-multiply (Id+ΠD−1B) by block-diagi (Ãii ):

155



BSS Solve: Summary

What have we achieved?
▶ Instead of solving a linear system of size

(NL0 boxes ·m)× (NL0 boxes ·m)

we solve a linear system of size

(NL0 boxes · K )× (NL0 boxes · K ),

which is cheaper by a factor of (K/m)3.
▶ We are now only solving on the skeletons.

compress

(Figure following G.
Martinsson, drawn by
A. Fikl)

156



Hierarchically Block-Separable
To get to O(N), realize we can recursively
▶ group skeletons
▶ eliminate more variables.

Where does this process start?

Demo: Skeletonization using Proxies (Hierarchical)
157



Hierarchically Block-Separable

In order to get O(N) complexity, could we apply this procedure recursively?

compress
cluster

compress
cluster

compress

(Figure following G. Martinsson, drawn by A. Fikl)

158



Hierarchically Block-Separable

▶ Using this hierarchical grouping gives us
Hierarchically Block-Separable (HBS) matrices.

▶ If you have heard the word H-matrix and H2-matrix, the ideas are
very similar. Differences:
▶ H-family matrices don’t typically use the ID

(instead often use Adaptive Cross Approximation or ACA)
▶ H2 does target clustering (like FMM), H does not (like Barnes-Hut)

159



Outline
Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions
Ewald Summation
Barnes-Hut
Fast Mutipole
Direct Solvers
The Butterfly Factorization

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

160



Recap: Fast Fourier Transform

The Discrete Fourier Transform (DFT) is given by:

Xk =
N−1X

n=0

xne
− 2πi

N
nk (k = 0, . . . ,N − 1)

The foundation of the Fast Fourier Transform (FFT) is the factorization:

Xk =

N/2−1X

m=0

x2me
− 2πi

N/2mk

| {z }
DFT of even−indexed part of xn

+e−
2πi
N

k

N/2−1X

m=0

x2m+1e
− 2πi

N/2mk

| {z }
DFT of odd−indexed part of xn

.

161



FFT: Data Flow

(Figure credit: Wikipedia)
Perhaps a little bit like a butterfly?

162



Fourier Transforms: A Different View

Claim:
The [numerical] rank of the normalized Fourier transform with ker-
nel e iγxt is bounded by a constant times γ, at any fixed precision
ϵ.

(i.e. rank is proportional to the area of the rectangle swept out by x and t)
[O’Neil et al. ‘10]

Demo: Butterfly Factorization (Part I)

163



Recompression: Making use of Area-Bounded Rank

How do rectangular submatrices get expressed so as to reveal their
constant rank?

164


