


Solving Integral Equations

Given
(Aϕ)(x) :=

Z

G
K (x , y)φ(y)dy ,

are we allowed to ask for a solution of

(Id+A)φ = g?
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Attempt 1: The Neumann series

Want to solve
φ− Aφ = (I − A)φ = g .

Formally:
φ = (I − A)−1g .

What does that remind you of?
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Attempt 1: The Neumann series (II)
Theorem

A : X → X Banach, ∥A∥ < 1 (I − A)−1 =
∞X

k=0

Ak with

∥(I − A)−1∥ ≤ 1/(1 − ∥A∥).

▶ How does this rely on completeness/Banach-ness?
▶ There’s an iterative procedure hidden in this.

(Called Picard Iteration. Cf: Picard-Lindelöf theorem.)
Hint: How would you compute

P
k A

k f ?
Q: Why does this fall short?
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Compact Sets

Definition (Precompact/Relatively compact)

M ⊆ X precompact:⇔ all sequences (xk) ⊂ M contain a subsequence
converging in X

Definition (Compact/‘Sequentially complete’)

M ⊆ X compact:⇔ all sequences (xk) ⊂ M contain a subsequence
converging in M

▶ Precompact ⇒ bounded
▶ Precompact ⇔ bounded (finite dim. only!)
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Compact Sets (II)

Counterexample to ‘precompact ⇔ bounded’? (∞ dim)
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Compact Operators

X ,Y : Banach spaces

Definition (Compact operator)

T : X → Y is compact :⇔ T (bounded set) is precompact.

Theorem

▶ T , S compact ⇒ αT + βS compact
▶ One of T , S compact ⇒ S ◦ T compact
▶ Tn all compact, Tn → T in operator norm ⇒ T compact

Questions:
▶ Let dimT (X ) < ∞. Is T compact?
▶ Is the identity operator compact?
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Intuition about Compact Operators

▶ Compact operator: As finite-dimensional as you’re going to get in
infinite dimensions.

▶ Not clear yet–but they are moral (∞-dim) equivalent of a matrix
having low numerical rank.

▶ Are compact operators continuous (=bounded)?
▶ What do they do to high-frequency data?
▶ What do they do to low-frequency data?
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Arzelà-Ascoli
Let G ⊂ Rn be compact.

Theorem (Arzelà-Ascoli [Kress LIE 3rd ed. Thm. 1.18])

U ⊂ C (G ) is precompact iff it is bounded and equicontinuous.

Equicontinuous means

Continuous means:
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Arzelà-Ascoli: Proof Sketch for b∧ e ⇒ c
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