






Green’s Formula

What if △v = 0 and u = G (|y − x |) in Green’s second identity?
Z

Ω
u△v − v△u =

Z

∂Ω
u(n̂ ·∇v)− v(n̂ ·∇u)ds

Can you write that more briefly?
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Green’s Formula (Full Version)

Ω bounded

Theorem (Green’s Formula [Kress LIE 2nd ed. Thm 6.5])

If △u = 0, then

(S(n̂ ·∇u)− Du)(x) =





u(x) x ∈ Ω,
u(x)

2 x ∈ ∂Ω,

0 x ̸∈ Ω.
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Green’s Formula and Cauchy Data

Suppose I know ‘Cauchy data’ (u|∂Ω, n̂ ·∇u|∂Ω) of u. What can I do?

What if Ω is an exterior domain?

What if u = 1? Do you see any practical uses of this?
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Mean Value Theorem
Theorem (Mean Value Theorem [Kress LIE 2nd ed. Thm 6.7])

If ∆u = 0, u(x) =
Z

B(x ,r)
u(y)dy =

Z

∂B(x ,r)
u(y)dy

Define
R

?

Trace back to Green’s Formula (say, in 2D):
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Maximum Principle

Theorem (Maximum Principle [Kress LIE 2nd ed. 6.9])

If △u = 0 on compact set Ω̄:
u attains its maximum on the boundary.

Suppose it were to attain its maximum somewhere inside an open set. . .

What do our constructed harmonic functions (layer potentials) do there?
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Green’s Formula at Infinity: Statement
Ω ⊆ Rn bounded, C 1, connected boundary, △u = 0 in Rn \ Ω, u bounded

Theorem (Green’s Formula in the exterior [Kress LIE 3rd ed. Thm 6.11])

(S∂Ω(n̂ ·∇u)− D∂Ωu)(x) + PVu∞ = u(x)

for some constant u∞. Only for n = 2,

u∞ =
1

2πr

Z

|y |=r
u(y)dsy .

Realize the power of this statement:
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Green’s Formula at Infinity: Proof (1/4)
We will focus on R3. WLOG assume 0 ∈ Ω. Let M = ∥u∥L∞(Rn\Ω̄).
First, show ∥∇u∥ ≤ 6M/ ∥x∥ for x ≥ R0.
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Green’s Formula at Infinity: Proof (2/4)
Let x ∈ R3 \ Ω̄. Let r be such that Ω̄ ⊂ B(x , r). Apply Green’s formula on
bounded domains to B(x , r) \ Ω̄:

(S∂Ω(∂nu)− D∂Ωu)(x) + (S∂B(x ,r)(∂nu)− D∂B(x ,r)u)(x) = u(x).

Show S∂B(x ,r)(∂nu) → 0 as r → ∞:
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Green’s Formula at Infinity: Proof (3/4)
It remains to bound the term

D∂B(x ,r)u)(x) =
4π
r2

Z

∂B(x ,r)
u(y)dSy .

Can we transplant that ball to the origin in some sense?
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Green’s Formula at Infinity: Proof (4/4)

Observe �����
4π
r2

Z

∂B(0,r)
u(y)dSy

����� ≤ 4πM.

Consider the sequence

µn :=
4π
r2
n

Z

∂B(0,rn)
u(y)dSy .

Because of its boundedness and sequential compactness of the bounding
interval, out of a sequence of radii rn, we can pick a subsequence so that
(µn(k)) converges. Call the limit u∞.
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Green’s Formula at Infinity: Impact

Can we use this to bound u as x → ∞?
Consider the behavior of the kernel as r → ∞. Focus on 3D for simplicity.
(But 2D holds also.)

How about u’s derivatives?
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Jump relations:

r

r
Sµ

µ

Γ

S ′µ
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Jump Relations: Mathematical Statement
Let [X ] = X+ − X−. (Normal points towards “+”=“exterior”.)

Theorem (Jump Relations [Kress LIE 2nd ed. Thm. 6.14, 6.17,6.18])

[Sσ] = 0

lim
x→x0±

(S ′σ) =
�
S ′ ∓ 1

2
I

�
(σ)(x0) ⇒ [S ′σ] = −σ

lim
x→x0±

(Dσ) =

�
D ± 1

2
I

�
(σ)(x0) ⇒ [Dσ] = σ

[D ′σ] = 0

Truth in advertising: Assumptions on Γ?
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Jump Relations: Proof Sketch for SLP

Sketch the proof for the single layer.
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Jump Relations: Proof Sketch for DLP

Sketch proof for the double layer.
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Boundary Value Problems: Overview
Dirichlet Neumann

Int. limx→∂Ω− u(x) = g
+ unique

limx→∂Ω− n̂ ·∇u(x) = g
o may differ by constant

Ext. limx→∂Ω+ u(x) = g

u(x) =

(
O(1) 2D
o(1) 3D

as |x | → ∞

+ unique

limx→∂Ω+ n̂ ·∇u(x) = g
u(x) = o(1) as |x | → ∞
+ unique

with g ∈ C (∂Ω).
What does f (x) = O(1) mean? (and f (x) = o(1)?)

252



Uniqueness Proofs
Dirichlet uniqueness: why?

Neumann uniqueness: why?
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