
January 23, 2025
Announcements

Goals

Review



Approaches to High Performance

▶ Libraries (seen)
▶ Black-box Optimizing Compilers
▶ Compilers with Directives
▶ Code Transform Systems
▶ “Active Libraries”

Q: Give examples of the latter two.

15



Libraries: A Case Study

(Cij)
m,n
i ,j=1 =

ℓX

k=1

AikBkj

Demo: intro/DGEMM Performance
▶
▶

16



Do Libraries Stand a Chance? (in general)
▶ Tremendously successful approach — Name some examples

▶ Saw: Three simple integer parameters suffice to lose ’good’
performance
▶ Recent efforts: e.g. Batch BLAS

▶ Separation of Concerns
Example: Finite differences – e.g. implement ∂x , ∂y , ∂z as separate
(library) subroutines — What is the problem?

▶ Flexibility and composition 17



(Black-Box) Optimizing Compiler: Challenges

Why is black-box optimizing compilation so difficult?
▶ Application developer knowledge lost

▶ Simple example: “Rough” matrix sizes
▶ Data-dependent control flow
▶ Data-dependent access patterns
▶ Activities of other, possibly concurrent parts of the program
▶ Profile-guided optimization can recover some knowledge

▶ Obtain proofs of required properties
▶ Size of the search space

Consider http://polaris.cs.uiuc.edu/publications/padua.pdf

18



Directive-Based Compiler: Challenges

What is a directive-based compiler?
▶ Generally same as optimizing compiler
▶ Make use of extra promises made by the user
▶ What should the user promise?
▶ Ideally: feedback cycle between compiler and user

▶ Often broken in both directions
▶ User may not know what the compiler did
▶ Compiler may not be able to express what it needs

▶ Directives: generally not mandatory

19



Lies, Lies Everywhere
▶ Semantics form a contract between programmer and

language/environment
▶ Within those bounds, implementation has full freedom
▶ True at every level:

▶ Assembly
▶ “High-level” language (C)

Give examples of lies at these levels:

One approach: Lie to yourself
▶ “Domain-specific languages” ← A fresh language, I can do what I

want!
▶ Consistent semantics are notoriously hard to develop

▶ Especially as soon as you start allowing subsets of even (e.g.) C’s
integers 20



Class Outline

High-level Sections:
▶ Intro, Armchair-level Computer Architecture
▶ Machine Abstractions
▶ Performance: Expectation, Experiment, Observation
▶ Programming Languages for Performance
▶ Program Representation and Optimization Strategies
▶ Code Generation/JIT

21



Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
22



Moore’s Law

Issue: More transistors =
faster?

Work
s

= Clock Frequency

× Work/Clock

23



Dennard Scaling of MOSFETs

Parameter Factor
Dimension 1/κ
Voltage 1/κ
Current 1/κ
Capacitance 1/κ
Delay Time 1/κ
Power dissipation/circuit 1/κ2

Power density 1

[Dennard et al. ’74, via Bohr ’07]
▶ Frequency = Delay time−1

24



MOSFETs (“CMOS” – “complementary” MOS): Schematic

[Dennard et al. ‘74]
25


