
January 21, 2025
Announcements

Goals

Review



Languages and Abstractions for High-Performance
Scientific Computing

CS598 APK

Andreas Kloeckner

Spring 2025



Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions



Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions



Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions



Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions



Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions



Why this class?
▶ Setting: Performance-Constrained Code

When is a code performance-constrained?

▶ If your code is performance-constrained, what is the best approach?

▶ If your code is performance-constrained, what is the second-best
approach?



Examples of Performance-Constrained Codes

Discussion:
▶ In what way are these codes constrained?
▶ How do these scale in terms of the problem size?



What Problem are we Trying To Solve?

(Cij)
m,n
i ,j=1 =

ℓX

k=1

AikBkj

▶ Reference BLAS DGEMM code
▶ OpenBLAS DGEMM code

Demo: intro/DGEMM Performance



Goals: What are we Allowed to Ask For?

▶ Goal: “make efficient use of the machine”
▶ In general: not an easy question to answer
▶ In theory: limited by some peak machine throughput

▶ Memory Access
▶ Compute

▶ In practice: many other limits (Instruction cache, TLB, memory
hierarchy, NUMA, registers)



Class web page

https://bit.ly/hpcabstr-s25

contains:
▶ Class outline
▶ Slides/demos/materials
▶ Assignments
▶ Virtual Machine Image
▶ Piazza
▶ Grading Policies
▶ Video
▶ HW1 (soon)



Welcome Survey

Please go to:

https://bit.ly/hpcabstr-s25

and click on ’Start Activity’.

If you are seeing this later, you can find the activity at Activity:
welcome-survey.



Grading / Workload

Four components:
▶ Homework: 25%
▶ Paper Presentation: 25%

▶ 30 minutes (two per class)
▶ Presentation sessions scheduled throughout the semester
▶ Paper list on web page
▶ Sign-up survey: soon

▶ Paper Reactions: 10%
▶ Computational Project: 40%



Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/numerics-notes

Copyright (C) 2010-2013 Andreas Kloeckner
Copyright (C) 2025 University of Illinois Board of Trustees

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE



Approaches to High Performance

▶ Libraries (seen)
▶ Black-box Optimizing Compilers
▶ Compilers with Directives
▶ Code Transform Systems
▶ “Active Libraries”

Q: Give examples of the latter two.



Libraries: A Case Study

(Cij)
m,n
i ,j=1 =

ℓX

k=1

AikBkj

Demo: intro/DGEMM Performance
▶
▶



Do Libraries Stand a Chance? (in general)
▶ Tremendously successful approach — Name some examples

▶ Saw: Three simple integer parameters suffice to lose ’good’
performance
▶ Recent effort: “Batch BLAS” e.g.

http://www.icl.utk.edu/files/publications/2017/icl-utk-1032-2017.pdf
▶ Separation of Concerns

Example: Finite differences – e.g. implement ∂x , ∂y , ∂z as separate
(library) subroutines — What is the problem?

▶ Flexibility and composition


