
February 13, 2025
Announcements

Goals

Review

Case study: Matrix-Matrix Mult. (’MMM’) via Bandwidth
Cost model for MMM in a two-level hierarchy based on bandwidth?

[Yotov et al. ’07]
75

Case study: Matrix-Matrix Mult. (’MMM’): Discussion

Discussion: What are the main simplifications in each model?

[Yotov et al. ’07]

General Q: How can we analyze cache cost of algorithms in general?

76

Hong/Kung: Red/Blue Pebble Game

Simple means of I/O cost analysis: “Red/blue pebble game”
▶ A way to quantify I/O cost on a DAG (why a DAG?)
▶ “Red Hot” pebbles: data that can be computed on
▶ “Blue Cool” pebbles: data that is stored, but not available for

computation without I/O
Note: Can allow “Red/Purple/Blue/Black”: more levels

Q: What are the cost metrics in this model?

[Hong/Kung ‘81]

77

Cache-Oblivious Algorithms

Annoying chore: Have to pick multiple machine-adapted block sizes in
cache-adapted algorithms, one for each level in the memory hierarchy,
starting with registers.
Idea:
▶ Step 1: Express algorithm recursively in divide & conquer manner
▶ Step 2: Pick a strategy to decrease block size

Give examples of block size strategies, e.g. for MMM:

Result:
▶ Asymptotically optimal on Hong/Kung metric

78

Cache-Oblivious Algorithms: Issues

What are potential issues on actual hardware?

[Yotov et al. ’07]

79

Recall: Big-O Notation

Classical Analysis of Algorithms (e.g.):

Cost(n) = O(n3).

Precise meaning? Anything missing from that statement?

80

Comment: “Asymptotically Optimal”

Comments on asymptotic statements about cost in relation to high
performance?
▶ No statement about finite n

▶ No statement about the constant
Net effect: Having an understanding of asymptotic cost is necessary, but
not sufficient for high performance.

HPC is in the business of minimizing C in:

Cost(n) ≤ C · n3 (for all n)

81

Alignment

Alignment describes the process of matching the base address of:
▶ Single word: double, float
▶ SIMD vector
▶ Larger structure

To machine granularities:

Q: What is the performance impact of misalignment?

82

Performance Impact of Misalignment

· · ·
Matched structure

· · ·
Matched structure

83

SIMD: Basic Idea
What’s the basic idea behind SIMD?

What architectural need does it satisfy?

Typically characterized by width of data path:
▶ SSE: 128 bit (4 floats, 2 doubles)
▶ AVX-2: 256 bit (8 floats, 4 doubles)
▶ AVX-512: 512 bit (16 floats, 8 doubles)

84

SIMD: Architectural Issues

Realization of inter-lane comm. in SIMD? Find instructions.

Name tricky/slow aspects in terms of expressing SIMD:

85

SIMD: Intel Instructions

x86 SIMD suffixes: What does the “ps” suffix mean? “sd”?

86

SIMD: Transposes

Why are transposes important? Where do they occur?

Example implementation aspects:
▶ HPTT: [Springer et al. ‘17]
▶ github: springer13/hptt 8x8 transpose microkernel
▶ Q: Why 8x8?

87

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
88

Multiple Cores vs Bandwidth

Assume (roughly right for Intel):
▶ memory latency of 100 ns
▶ peak DRAM bandwidth of 50 GB/s (per socket)

How many cache lines should be/are in flight at one time?

[McCalpin ‘18]

89

Topology and NUMA
10DRi/X10DRi Qu ck Reference

JPI2C1
JPW

R1
JPW

R2

JOH1

JL1

JSD1

JSTBY1
JTPM1

JPB1

JWD1

JVRM1
JI2C2

JPME2
JI2C1

SP1

JIPMB1

LE2

FAN4

FAN2

FAN3

FAN1

FANB
S-SATA2

MAC CODE

BAR CODE

S-SATA3S-SATA0

S-SATA1

Fan5

T-SGPIO3

USB2/3

IPMI_LAN

UID

JBT1

T-SGPIO2
T-SGPIO1

I-SATA1

I-SATA0

I-SATA3

I-SATA5
I-SATA4

COM
2

CPU1 SLOT1 PCI-E 3.0 X8

CPU1 SLOT2 PCI-E 3.0 X16

CPU1 SLOT3 PCI-E 3.0 X8

CPU2 SLOT4 PCI-E 3.0 X16

CPU2 SLOT5 PCI-E 3.0 X8

CPU2 SLOT6 PCI-E 3.0 X16
P1 DIMMC2
P1 DIMMC1

P2 DIMME1
P2 DIMME2

P1 DIMMD1

P1 DIMMD2

P2 DIMMF1
P2 DIMMF2

VGA

P1 DIMMB2

P2 DIMMH2
P1 DIMMA1
P1 DIMMA2

P2 DIMMG1

P2 DIMMH1
P2 DIMMG2

LAN2

COM1

LAN1

USB0/1LE1
Fan6LEDM1

BIOS

JD1

USB4/5

I-SATA2

FANA

JPG1
JPL1

JF1

P1 DIMMB1

FPCTRL

Battery

X10DRi-(T)
Rev. 1.02

Intel PCH

LAN CTRL

BMC

BMC FW

J24

VGA/BMC
Memory

(2.0)

(USB2.0) (USB2.0)

CLOSE 1st

OPEN 1st

CLOSE 1st

OPEN 1st

USB6/7(3.0)

USB8/9(3.0)
USB10 (3.0)

CPU2

CPU1

JUIDB1

JVRM2

J23

J25
J27

J26
J-USB3-1AA

JSD2

[SuperMicro Inc. ‘15]
Demo: Show lstopo on porter, from hwloc.

90

Placement and Pinning
Who decides on what core my code runs? How?

Who decides on what NUMA node memory is allocated?

Demo: intro/NUMA and Bandwidths
What is the main expense in NUMA?

91

Cache Coherence
What is cache coherence?

How is cache coherence implemented?

What are the performance impacts?
▶ Demo: intro/Threads vs Cache
▶ Demo: intro/Lock Contention

92

’Conventional’ vs Atomic Memory Update

Read Increment Write

Interruptible! Interruptible!

Read Increment Write

Protected Protected

93

Outline

Introduction

Machine Abstractions
C
OpenCL/CUDA
Convergence, Differences in Machine Mapping
Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

94

Outline

Introduction

Machine Abstractions
C
OpenCL/CUDA
Convergence, Differences in Machine Mapping
Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

95

Atomic Operations: Compare-and-Swap
#inc lude <stda tom i c . h>
_Bool atomic_compare_exchange_strong (

v o l a t i l e A∗ obj , C∗ expected , C d e s i r e d) ;

What does volatile mean?

What does this do?

How might you use this to implement atomic FP multiplication?

96

Memory Ordering
Why is Memory Ordering a Problem?

What are the different memory orders and what do they mean?

97

Example: A Semaphore With Atomics
#inc lude <stda tom ic . h> // mo_−>memory_order , a_−>atomic
typedef s t ruc t { atomic_int v ; } naive_sem_t ;
void sem_down(naive_sem_t ∗ s)
{

whi le (1) {
whi le (a_ l o ad_exp l i c i t (&(s−>v) , mo_______) < 1)

sp in loop_body () ;
i n t tmp=a_fe tch_add_exp l i c i t (&(s−>v) , −1, mo________rel) ;
i f (tmp >= 1)

break ; // we got the l o c k
e l s e // undo our attempt

a_fe tch_add_exp l i c i t (&(s−>v) , 1 , mo_______) ;
}

}
void sem_up(naive_s_t ∗ s) {

a_fe tch_add_exp l i c i t (&(s−>v) , 1 , mo_______) ;
}

[Cordes ‘16] — Hardware implementation: how? 98

C: What is ’order’?
C11 Committee Draft, December ‘10, Sec. 5.1.2.3, “Program execution”:
▶ (3) Sequenced before is an asymmetric, transitive, pair-wise relation

between evaluations executed by a single thread, which induces a partial
order among those evaluations. Given any two evaluations A and B, if A is
sequenced before B, then the execution of A shall precede the execution of
B. (Conversely, if A is sequenced before B, then B is sequenced after A.) If
A is not sequenced before or after B, then A and B are unsequenced.
Evaluations A and B are indeterminately sequenced when A is sequenced
either before or after B, but it is unspecified which. The presence of a
sequence point between the evaluation of expressions A and B implies that
every value computation and side effect associated with A is sequenced
before every value computation and side effect associated with B. (A
summary of the sequence points is given in annex C.)

Q: Where is this definition used (in the standard document)?

99

C: What is ’order’? (Encore)

C11 Draft, 5.1.2.4 “Multi-threaded executions and data races”:
▶ All modifications to a particular atomic object M occur in some

particular total order, called the modification order of M.
▶ An evaluation A carries a dependency to an evaluation B if . . .
▶ An evaluation A is dependency-ordered before an evaluation B if. . .
▶ An evaluation A inter-thread happens before an evaluation B if. . .
▶ An evaluation A happens before an evaluation B if. . .

Why is this so subtle?

100

C: How Much Lying is OK?

C11 Committee Draft, December ‘10, Sec. 5.1.2.3, “Program execution”:
▶ (1) The semantic descriptions in this International Standard describe

the behavior of an abstract machine in which issues of optimization
are irrelevant.

▶ (2) Accessing a volatile object, modifying an object, modifying a file,
or calling a function that does any of those operations are all side
effects, which are changes in the state of the execution environment.
[. . .]

101

C: How Much Lying is OK?
▶ (4) In the abstract machine, all expressions are evaluated as specified

by the semantics. An actual implementation need not evaluate part of
an expression if it can deduce that its value is not used and that no
needed side effects are produced (including any caused by calling a
function or accessing a volatile object).

▶ (6) The least requirements on a conforming implementation are:
▶ Accesses to volatile objects are evaluated strictly according to the rules

of the abstract machine.
▶ At program termination, all data written into files shall be identical to

the result that execution of the program according to the abstract
semantics would have produced.

▶ The input and output dynamics of interactive devices shall take place
as specified in 7.21.3. The intent of these requirements is that
unbuffered or line-buffered output appear as soon as possible, to ensure
that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.
102

Arrays

Why are arrays the dominant data structure in high-performance code?

Any comments on C’s arrays?

103

Arrays vs Abstraction
Arrays-of-Structures or Structures-of-Arrays? What’s the difference? Give
an example.

Language aspects of the distinction? Salient example?

104

C and Multi-Dimensional Arrays: A Saving Grace
// YES :
void f (i n t m, i n t n , double (∗) [m] [n]) ;

// NO:
s t ruct a ry {

i n t m;
i n t n ;
double (∗ a r r a y) [m] [n] ;

} ;

// YES :
s t ruct a r y {

i n t m;
i n t n ;
double a [] ;

} ;
105

