
March 11, 2025
Announcements

Goals

Review

Memory Ordering

Why is Memory Ordering a Problem?

What’s the purpose of different memory orders?

99

Memory ordering semantics

100

Example: A Semaphore With Atomics
#inc lude <stda tom ic . h> // mo_−>memory_order , a_−>atomic
typedef s t ruc t { atomic_int v ; } naive_sem_t ;
void sem_down(naive_sem_t ∗ s)
{

whi le (1) {
whi le (a_ l o ad_exp l i c i t (&(s−>v) , mo_______) < 1)

sp in loop_body () ;
i n t tmp=a_fe tch_add_exp l i c i t (&(s−>v) , −1, mo________rel) ;
i f (tmp >= 1)

break ; // we got the l o c k
e l s e // undo our attempt

a_fe tch_add_exp l i c i t (&(s−>v) , 1 , mo_______) ;
}

}
void sem_up(naive_s_t ∗ s) {

a_fe tch_add_exp l i c i t (&(s−>v) , 1 , mo_______) ;
}

[Cordes ‘16] — Hardware implementation: how? 101

C: What is ’order’?
C11 Committee Draft, December ‘10, Sec. 5.1.2.3, “Program execution”:
▶ (3) Sequenced before is an asymmetric, transitive, pair-wise relation

between evaluations executed by a single thread, which induces a partial
order among those evaluations. Given any two evaluations A and B, if A is
sequenced before B, then the execution of A shall precede the execution of
B. (Conversely, if A is sequenced before B, then B is sequenced after A.) If
A is not sequenced before or after B, then A and B are unsequenced.
Evaluations A and B are indeterminately sequenced when A is sequenced
either before or after B, but it is unspecified which. The presence of a
sequence point between the evaluation of expressions A and B implies that
every value computation and side effect associated with A is sequenced
before every value computation and side effect associated with B. (A
summary of the sequence points is given in annex C.)

Q: Where is this definition used (in the standard document)?

102

C: What is ’order’? (Encore)
C11 Draft, 5.1.2.4 “Multi-threaded executions and data races”:
▶ All modifications to a particular atomic object M occur in some

particular total order, called the modification order of M.
▶ An evaluation A carries a dependency to an evaluation B if . . .
▶ An evaluation A is dependency-ordered before an evaluation B if. . .
▶ An evaluation A inter-thread happens before an evaluation B if. . .
▶ An evaluation A happens before an evaluation B if. . .

Why is this so subtle?

103

C: How Much Lying is OK?

C11 Committee Draft, December ‘10, Sec. 5.1.2.3, “Program execution”:
▶ (1) The semantic descriptions in this International Standard describe

the behavior of an abstract machine in which issues of optimization
are irrelevant.

▶ (2) Accessing a volatile object, modifying an object, modifying a file,
or calling a function that does any of those operations are all side
effects, which are changes in the state of the execution environment.
[. . .]

104

C: How Much Lying is OK?
▶ (4) In the abstract machine, all expressions are evaluated as specified

by the semantics. An actual implementation need not evaluate part of
an expression if it can deduce that its value is not used and that no
needed side effects are produced (including any caused by calling a
function or accessing a volatile object).

▶ (6) The least requirements on a conforming implementation are:
▶ Accesses to volatile objects are evaluated strictly according to the rules

of the abstract machine.
▶ At program termination, all data written into files shall be identical to

the result that execution of the program according to the abstract
semantics would have produced.

▶ The input and output dynamics of interactive devices shall take place
as specified in 7.21.3. The intent of these requirements is that
unbuffered or line-buffered output appear as soon as possible, to ensure
that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.
105

Arrays

Why are arrays the dominant data structure in high-performance code?

Any comments on C’s arrays?

106

