April 15, 2025
Announcements

Goals
- bd of I

- Q{Mllj
- /MOO(O,QA”()/

Review

Host-Device Concurrency

» Host and Device run asynchronously

» Host submits to queue:
» Computations
» Memory Transfers
» Sync primitives
>
>

.B'alltches of these

» Mutable batches of these
> Nvidia: “CUDA Graphs”

» OpenCL: “Command buffers”

» Host can wait for:

rained queue
| “events”

Profiling

143

Timing GPU Work
How do you find the execution time of a GPU keinel?

ot
\'J"Wm w{) md; SdW q Y,L,/,,W?/
\;:Mf ﬂ\a H @:A{ULQL\L JL\L W

e/ D wn.r
Ile{mﬁ the worb fou A‘M‘a Stop a fines v

7Mh wh-

WW '
S g Jbe frue

How do you do this asynchronously?

e qunce

144

Host-Device Data Exchange

Sad fact: Must get data onto device to compute
» Transfers can be a bottleneck
» If possible, overlap with computation

» Pageable memory incurs difficulty in GPU-host transfers, often entails
(another!) CPU side copy

inned memory": unpageable, avoids
Various system-defi

“Unified memory” (CUDA)/"Shared Virtual Memory" (OpenCL):

» GPU directly accesses host memory

of allocating pinned memory

» Main distinction: Coherenge
» “Coarse grain™: Per-buffer\fefices
» “Fine grain buffer: B te coherent (device mem)
> “Fine grain system’: Byte-for-byte coherent (anywhere)

Performance: Ballpark Numbers?
Bandwidth host/device:

(vi %ob; Y 166 WLl T

Bandwidth on device (A100 PCle):

eyl (00 U, Somkl_107BJ, Ghirg 17 T8,
Flop throughput? (A100 PCle) \/
—(D i‘\ﬂ\: 7:\v\o,(t, (0 _T_X OlO"\uL
Kernel launch overheaé?
LA]
T

Good source of details: Wikipedia: List of Nidia 6PUs

146

Outline

Machine Abstractions

Convergence, Differences in Machine Mapping

147

Die Shot Gallery (old)

AMD Tahiti
(2012)

Nv Fermi
(2010)

148

Die Shot Gallery (new)

boc G

Nv GV100 (o) nteI CL
v
(2018) Wl (2018) (2024)
specd farpos

149

Trends in Processor Architecture

What can we expect from future processor architectures?

CMMW(H“? CLV?P)
lmuk@ waj ores

Sl Lney
Cmﬂl\/{, bu > mow by

((M‘(l(eq(#o \,\L&L[qufd W

150

Common Challenges

What are the common challenges encountered by both CPUs and GPUs?

0

(e Mosiry syshs

Gty Comeu frine oy o GXH;

\

7

Goal: Try to see CPUs and GPUs as points in a design space 'continuum’
rather than entirely different things.

151

Outline

Machine Abstractions

Lower-Level Abstractions: SPIR-V, PTX

152

PTX: Demo

Demo: machabstr/PTX and SASS

Nvidia PTX manual

153

PTX: Cache Annotations

Loads:

.ca Cache at all levels—likely to be accessed again

.cg Cache at global level (cache in L2 and below and not L1)
.cs Cache streaming—likely to be accessed once

.lu Last use

.cv Consider cached system memory lines stale—fetch again

Stores:

.wb Cache write-back all coherent levels

.cg Cache at global level (cache in L2 and below and not L1)
.cs Cache streaming—likely to be accessed once

.wt Cache write-through (to system memory)

Lost/hidden at the C level!

154

SPIR-V

Currently: C (OpenCL C, GLSL, HLSL) used as intermediate
representations to feed GPUs.
Downsides:
» Compiler heuristics may be focused on human-written code
» Parsing overhead (preprocessor!)
» C semantics may not match (too high-level)
SPIR-V:
» Goal: Common intermediate representation (“IR") for all GPU-facing
code (Vulkan, OpenCL)
» “Extended Instruction Sets™:
» General compute (OpenCL/CUDA) needs: pointers, special functions

» Different from “SPIR" (tweaked LLVM IR)

SPIR-V Example

%2
%3
%6
W
%8
%10
%11
%12
%13
%14
%15

%34
%38
%39
%40

ha1
%43
had
%45
%46

= OpTypeVoid

OpTypeFunction %2
OpTypeFloat 32
OpTypeVector %6 4

= OpTypePointer Function %7

OpConstant %6 1
OpConstant %6 2

OpConstantComposite %7 %10 %10 %11 %10 ;

OpTypelInt 32 0O
OpConstant %13 5
OpTypeArray %7 %14

OpLoad %7 %33
OpAccessChain %37 %20 %35 %21 %36
OpLoad %7 %38

OpFAdd %7 %34 %39
OpStore %31 %40

OpBranch %29

OpLabel

OpLoad %7 %42

OpExtInst %7 %1 Sqrt %43
OpLoad %7 %9

OpFMul %7 %44 %45
OpStore %31 %46

s>

void ()

32-bit float

vecd

function-local vecéx*

vec4(1.0, 1.0, 2.0, 1.0)

32-bit int, sign-less

s.v[2]

else

extended instruction sqrt

156

Outline

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Outline

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance

158

Qualifying Performance

» What is good performance?

» |s speed-up (e.g. GPU vs CPU? C vs Matlab?) a meaningful way to
assess performance?

» How else could one form an understanding of performance?

[/l/lo(QQ t'{

Hager et al. ‘17
Hockney et al. ‘89

159

A Story of Bottlenecks
Imagine:
» A bank with a few service desks
» A revolving door at the entrance

What situations can arise at steady-state?

Unt ol e cloor
Cine b dhe dlad

What numbers do we need to characterize performance of this system?

b, ‘\L\mjlq(f)n&f ok doo [cuiﬁm”s/ﬂ

NI ﬁﬂsh%s / ugovor
Plngk- ‘ @Qal ?WU\M/’V)/{/ C (ﬂ/\lS_hUhS/ 17)]

160

A Story of Bottlenecks (cont'd)

> Ppeak: [task/sec] Peak throughput of the service desks

» [[tasks/customer] Intensity
» b: [customers/sec] Throughput of the revolving door

What is the aggregate throughput?

P mi. (L‘II V,w)

\

C(; UCSH) oS / s

Hager et al. ‘17

161

