
April 15, 2025
Announcements

Goals

Review



Host-Device Concurrency

▶ Host and Device run asynchronously
▶ Host submits to queue:

▶ Computations
▶ Memory Transfers
▶ Sync primitives
▶ . . .
▶ Batches of these

▶ Mutable batches of these
▶ Nvidia: “CUDA Graphs”
▶ OpenCL: “Command buffers”

▶ Host can wait for:
▶ drained queue
▶ Individual “events”

▶ Profiling

. . .
HostHost

DeviceDevice

Q
ue

ue
1

Q
ue

ue
1

Q
ue

ue
2

Q
ue

ue
2

143



Timing GPU Work
How do you find the execution time of a GPU kernel?

How do you do this asynchronously?

144



Host-Device Data Exchange

Sad fact: Must get data onto device to compute
▶ Transfers can be a bottleneck
▶ If possible, overlap with computation
▶ Pageable memory incurs difficulty in GPU-host transfers, often entails

(another!) CPU side copy
▶ “Pinned memory”: unpageable, avoids copy

▶ Various system-defined ways of allocating pinned memory

“Unified memory” (CUDA)/“Shared Virtual Memory” (OpenCL):
▶ GPU directly accesses host memory
▶ Main distinction: Coherence

▶ “Coarse grain”: Per-buffer fences
▶ “Fine grain buffer”: Byte-for-byte coherent (device mem)
▶ “Fine grain system”: Byte-for-byte coherent (anywhere)

145



Performance: Ballpark Numbers?
Bandwidth host/device:

Bandwidth on device (A100 PCIe):

Flop throughput? (A100 PCIe)

Kernel launch overhead?

Good source of details: Wikipedia: List of Nidia GPUs
146



Outline

Introduction

Machine Abstractions
C
OpenCL/CUDA
Convergence, Differences in Machine Mapping
Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

147



Die Shot Gallery (old)

GT200
(2008)

Nv Fermi
(2010)

Intel IVB
(2012)

AMD Tahiti
(2012)

Nv GK110
(2012)

148



Die Shot Gallery (new)

GK110
(2012)

Nv GV100
(2018)

Intel ICL
(2018)

AMD Zen 5
(2024)

AMD MI300
(2024)

149



Trends in Processor Architecture

What can we expect from future processor architectures?

150



Common Challenges

What are the common challenges encountered by both CPUs and GPUs?

Goal: Try to see CPUs and GPUs as points in a design space ’continuum’
rather than entirely different things.

151



Outline

Introduction

Machine Abstractions
C
OpenCL/CUDA
Convergence, Differences in Machine Mapping
Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

152



PTX: Demo

Demo: machabstr/PTX and SASS
Nvidia PTX manual

153



PTX: Cache Annotations

Loads:

.ca Cache at all levels–likely to be accessed again

.cg Cache at global level (cache in L2 and below and not L1)

.cs Cache streaming–likely to be accessed once

.lu Last use

.cv Consider cached system memory lines stale–fetch again

Stores:

.wb Cache write-back all coherent levels

.cg Cache at global level (cache in L2 and below and not L1)

.cs Cache streaming–likely to be accessed once

.wt Cache write-through (to system memory)

Lost/hidden at the C level!

154



SPIR-V

Currently: C (OpenCL C, GLSL, HLSL) used as intermediate
representations to feed GPUs.
Downsides:
▶ Compiler heuristics may be focused on human-written code
▶ Parsing overhead (preprocessor!)
▶ C semantics may not match (too high-level)

SPIR-V:
▶ Goal: Common intermediate representation (“IR”) for all GPU-facing

code (Vulkan, OpenCL)
▶ “Extended Instruction Sets”:

▶ General compute (OpenCL/CUDA) needs: pointers, special functions

▶ Different from “SPIR” (tweaked LLVM IR)

155



SPIR-V Example
%2 = OpTypeVoid
%3 = OpTypeFunction %2 ; void ()
%6 = OpTypeFloat 32 ; 32-bit float
%7 = OpTypeVector %6 4 ; vec4
%8 = OpTypePointer Function %7 ; function-local vec4*

%10 = OpConstant %6 1
%11 = OpConstant %6 2
%12 = OpConstantComposite %7 %10 %10 %11 %10 ; vec4(1.0, 1.0, 2.0, 1.0)
%13 = OpTypeInt 32 0 ; 32-bit int, sign-less
%14 = OpConstant %13 5
%15 = OpTypeArray %7 %14

[...]
%34 = OpLoad %7 %33
%38 = OpAccessChain %37 %20 %35 %21 %36 ; s.v[2]
%39 = OpLoad %7 %38
%40 = OpFAdd %7 %34 %39

OpStore %31 %40
OpBranch %29

%41 = OpLabel ; else
%43 = OpLoad %7 %42
%44 = OpExtInst %7 %1 Sqrt %43 ; extended instruction sqrt
%45 = OpLoad %7 %9
%46 = OpFMul %7 %44 %45

OpStore %31 %46 156



Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

157



Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

158



Qualifying Performance

▶ What is good performance?
▶ Is speed-up (e.g. GPU vs CPU? C vs Matlab?) a meaningful way to

assess performance?
▶ How else could one form an understanding of performance?

Hager et al. ‘17
Hockney et al. ‘89

159



A Story of Bottlenecks
Imagine:
▶ A bank with a few service desks
▶ A revolving door at the entrance

What situations can arise at steady-state?

What numbers do we need to characterize performance of this system?

160



A Story of Bottlenecks (cont’d)

▶ Ppeak: [task/sec] Peak throughput of the service desks
▶ I : [tasks/customer] Intensity
▶ b: [customers/sec] Throughput of the revolving door

What is the aggregate throughput?

Hager et al. ‘17

161


