
April 8, 2025
Announcements

Goals

Review



GPU Programming Model: Commentary
Advantages:

Disadvantages:

133





Performance: Limits to Concurrency

What limits the amount of concurrency exposed to GPU hardware?

134



Memory Systems: Recap

Processor Memory

CLK

R/W̄

A0..15

D0..15

135



Parallel Memories
Problem: Memory chips have only one data bus.
So how can multiple threads read multiple data items from memory
simultaneously?

Where does banking show up?

136



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

137



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]

137



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[BANK_COUNT*lid(0)]

137



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[(BANK_COUNT+1)*lid(0)]

137



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[ODD_NUMBER*lid(0)]

137



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[2*lid(0)]

137



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[f(gid(0))]

137



Memory Banking: Observations

▶ Factors of two in the stride: generally bad
▶ In a conflict-heavy access pattern, padding can help

▶ Usually not a problem since scratchpad is transient by definition

▶ Word size (bank offset) may be adjustable (Nvidia)
Given that unit strides are beneficial on global memory access, how do you
realize a transpose?

138



Memory Banking: AMD RDNA3 Registers
Manual dual-issue:

OpCodeX DSTX, SRCX0, SRCX1
:: OpCodeY DSTY, SRCY0, SRCY1

▶ Insns must be independent
▶ SRCX0 and SRCY0 must use different VGPR banks
▶ Dest VGPRs: one must be even and the other odd

RDNA3 specific:
▶ There are 4 VGPR banks (indexed by SRC[1:0]), and

each bank has a cache.
▶ Each cache has 3 read ports: one dedicated to SRC0,

one dedicated to SRC1 and one for SRC2.
▶ A cache can read all 3 of them at once, but it can’t

read two SRC0’s at once (or SRC1/2).

[Vince ‘25]

139



GPU Global Memory System

GCN Optimization Manual, AMD
140



GPU Global Memory Channel Map: Example

Byte address decomposition:

Address

8 | 7 0

Chnl

11 | 10

Bank

?

Address

31

Implications:
▶ Transfers between compute unit and channel have granularity

▶ Reasonable guess: warp/wavefront size × 32bits
▶ Should strive for good utilization (’Coalescing’)

▶ Channel count often not a power of two -> complex mapping
▶ Channel conflicts possible

▶ Also banked
▶ Bank conflicts also possible

141



GPU Global Memory: Performance Observations
Key quantities to observe for GPU global memory access:

Are there any guaranteed-good memory access patterns?

▶ Need to consider access pattern across entire device
▶ GPU caches: Use for spatial, not for temporal locality
▶ Switch available: L1/Scratchpad partitioning

▶ Settable on a per-kernel basis

▶ Since GPUs have meaningful caches at this point:
Be aware of cache annotations (see later)

142



Host-Device Concurrency

▶ Host and Device run asynchronously
▶ Host submits to queue:

▶ Computations
▶ Memory Transfers
▶ Sync primitives
▶ . . .
▶ Batches of these

▶ Mutable batches of these
▶ Nvidia: “CUDA Graphs”
▶ OpenCL: “Command buffers”

▶ Host can wait for:
▶ drained queue
▶ Individual “events”

▶ Profiling

. . .
HostHost

DeviceDevice

Q
ue

ue
1

Q
ue

ue
1

Q
ue

ue
2

Q
ue

ue
2

143


