April 8, 2025 Announcements

Goals

Review - Andrew holes GPUs?

.

Performance: Limits to Concurrency

What limits the amount of concurrency exposed to GPU hardware?

Occupancy / ICP

Memory Systems: Recap

Parallel Memories

Problem: Memory chips have only one data bus.

So how can multiple threads read multiple data items from memory simultaneously?

Where does banking show up?

local_variable[lid(0)]

local_variable[(BANK_COUNT+1)*lid(0)]

local_variable[ODD_NUMBER*lid(0)]

local_variable[2*lid(0)]

" broad cast"

local_variable[f(gid(0))]

Memory Banking: Observations

- Factors of two in the stride: generally bad
- In a conflict-heavy access pattern, padding can help
 - Usually not a problem since scratchpad is transient by definition
- Word size (bank offset) may be adjustable (Nvidia)

Given that unit strides are beneficial on global memory access, how do you realize a transpose? (old-timely) tromy lobal wf whith stride Go to scratchpad with BC41 stride, Noad From scrakhpan with 1 stride b global W/ unit strike

Memory Banking: AMD RDNA3 Registers Manual dual-issue:

VAL U

OPX

OPY

Cache

Back of

Bark 1

Rank 2

Dark 3

Register File

OpCodeX DSTX, SRCX0, SRCX1

:: OpCodeY DSTY, SRCY0, SRCY1

- Insns must be independent
- SRCX0 and SRCY0 must use different VGPR banks
- Dest VGPRs: one must be even and the other odd RDNA3 specific:
 - There are 4 VGPR banks (indexed by SRC[1:0]), and each bank has a cache.
 - Each cache has 3 read ports: one dedicated to SRC0, one dedicated to SRC1 and one for SRC2.
 - A cache can read all 3 of them at once, but it can't read two SRC0's at once (or SRC1/2).

GCN Optimization Manual, AMD

GPU Global Memory Channel Map: Example

Byte address decomposition:

Address	Bank	Chnl	Address	
31 ?	11	108	7	0

Implications:

- > Transfers between compute unit and channel have granularity
 - Reasonable guess: warp/wavefront size × 32bits
 - Should strive for good utilization ('Coalescing')
- Channel count often not a power of two -> complex mapping Channel conflicts possible
- Also banked
 - Bank conflicts also possible

GPU Global Memory: Performance Observations

Key quantities to observe for GPU global memory access:

Are there any guaranteed-good memory access patterns?

- ▶ Need to consider access pattern *across entire device*
- ► GPU caches: Use for spatial, not for temporal locality
- Switch available: L1/Scratchpad partitioning
 - Settable on a per-kernel basis
- Since GPUs have meaningful caches at this point: Be aware of cache annotations (see later)

Host-Device Concurrency

- Host and Device run asynchronously
- Host submits to queue:
 - Computations
 - Memory Transfers
 - Sync primitives
 - ▶ ...
 - Batches of these
 - Mutable batches of these
 - Nvidia: "CUDA Graphs"
 - OpenCL: "Command buffers"
- Host can wait for:
 - drained queue
 - Individual "events"
- Profiling

