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GPU Programming Model: Commentary
Advantages:

Disadvantages:
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Performance: Limits to Concurrency

What limits the amount of concurrency exposed to GPU hardware?
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Memory Systems: Recap

Processor Memory

CLK

R/W̄

A0..15

D0..15
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Parallel Memories
Problem: Memory chips have only one data bus.
So how can multiple threads read multiple data items from memory
simultaneously?

Where does banking show up?
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Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

137



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]
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Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[BANK_COUNT*lid(0)]
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Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[(BANK_COUNT+1)*lid(0)]
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Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[ODD_NUMBER*lid(0)]

137



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[2*lid(0)]
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Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[f(gid(0))]
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Memory Banking: Observations

▶ Factors of two in the stride: generally bad
▶ In a conflict-heavy access pattern, padding can help

▶ Usually not a problem since scratchpad is transient by definition

▶ Word size (bank offset) may be adjustable (Nvidia)
Given that unit strides are beneficial on global memory access, how do you
realize a transpose?
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Memory Banking: AMD RDNA3 Registers
Manual dual-issue:

OpCodeX DSTX, SRCX0, SRCX1
:: OpCodeY DSTY, SRCY0, SRCY1

▶ Insns must be independent
▶ SRCX0 and SRCY0 must use different VGPR banks
▶ Dest VGPRs: one must be even and the other odd

RDNA3 specific:
▶ There are 4 VGPR banks (indexed by SRC[1:0]), and

each bank has a cache.
▶ Each cache has 3 read ports: one dedicated to SRC0,

one dedicated to SRC1 and one for SRC2.
▶ A cache can read all 3 of them at once, but it can’t

read two SRC0’s at once (or SRC1/2).

[Vince ‘25]
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GPU Global Memory System

GCN Optimization Manual, AMD
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GPU Global Memory Channel Map: Example

Byte address decomposition:

Address

8 | 7 0

Chnl

11 | 10

Bank

?

Address

31

Implications:
▶ Transfers between compute unit and channel have granularity

▶ Reasonable guess: warp/wavefront size × 32bits
▶ Should strive for good utilization (’Coalescing’)

▶ Channel count often not a power of two -> complex mapping
▶ Channel conflicts possible

▶ Also banked
▶ Bank conflicts also possible
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GPU Global Memory: Performance Observations
Key quantities to observe for GPU global memory access:

Are there any guaranteed-good memory access patterns?

▶ Need to consider access pattern across entire device
▶ GPU caches: Use for spatial, not for temporal locality
▶ Switch available: L1/Scratchpad partitioning

▶ Settable on a per-kernel basis

▶ Since GPUs have meaningful caches at this point:
Be aware of cache annotations (see later)
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Host-Device Concurrency

▶ Host and Device run asynchronously
▶ Host submits to queue:

▶ Computations
▶ Memory Transfers
▶ Sync primitives
▶ . . .
▶ Batches of these

▶ Mutable batches of these
▶ Nvidia: “CUDA Graphs”
▶ OpenCL: “Command buffers”

▶ Host can wait for:
▶ drained queue
▶ Individual “events”

▶ Profiling

. . .
HostHost

DeviceDevice

Q
ue

ue
1
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ue
1
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ue
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