April 15, 2025 Announcements

Review

Goals

- nocl of GPU - Jruds - Modely

Host-Device Concurrency

- Host and Device run asynchronously
- Host submits to queue:
 - Computations
 - Memory Transfers
 - Sync primitives
 - ▶ ...
 - Batches of these
 - Mutable batches of these
 - Nvidia: "CUDA Graphs"
 - OpenCL: "Command buffers"
- Host can wait for:

drained queue
 Individual "events"
 Profiling

Timing GPU Work

How do you find the execution time of a GPU kernel?

How do you do this asynchronously?

Host-Device Data Exchange

Sad fact: Must get data onto device to compute

- ► Transfers can be a bottleneck
- ▶ If possible, overlap with computation
- Pageable memory incurs difficulty in GPU-host transfers, often entails (another!) CPU side copy
- "Pinned memory": unpageable, avoids copy
 Various system-defined ways of allocating pinned memory

"Unified memory" (CUDA)/"Shared Virtual Memory" (OpenCL):

- GPU directly accesses host memory
- ► Main distinction: Coherence
 - "Coarse grain": Per-buffer fences
 - "Fine grain buffer": Byte-for-byte coherent (device mem)
 - "Fine grain system": Byte-for-byte coherent (anywhere)

Performance: Ballpark Numbers?

Bandwidth host/device:

Introduction

Machine Abstractions

C OpenCL/CUDA Convergence, Differences in Machine Mapping Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Die Shot Gallery (old)

AMD Tahiti (2012)

Nv GK1 (2012)

Trends in Processor Architecture

What can we expect from future processor architectures?

Common Challenges

What are the common challenges encountered by both CPUs and GPUs?

Goal: Try to see CPUs and GPUs as points in a design space 'continuum' rather than entirely different things.

Introduction

Machine Abstractions

C OpenCL/CUDA Convergence, Differences in Machine Mapping Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Demo: machabstr/PTX and SASS Nvidia PTX manual

PTX: Cache Annotations

Loads:

- .ca Cache at all levels-likely to be accessed again
- .cg Cache at global level (cache in L2 and below and not L1)
- .cs Cache streaming-likely to be accessed once
- .lu Last use
- .cv Consider cached system memory lines stale-fetch again

Stores:

- .wb Cache write-back all coherent levels
- . cg Cache at global level (cache in L2 and below and not L1)
- .cs Cache streaming-likely to be accessed once
- .wt Cache write-through (to system memory)

Lost/hidden at the C level!

SPIR-V

Currently: C (OpenCL C, GLSL, HLSL) used as intermediate representations to feed GPUs. Downsides:

- Compiler heuristics may be focused on human-written code
- Parsing overhead (preprocessor!)
- C semantics may not match (too high-level)

SPIR-V:

- Goal: Common intermediate representation ("IR") for all GPU-facing code (Vulkan, OpenCL)
- "Extended Instruction Sets":
 - General compute (OpenCL/CUDA) needs: pointers, special functions
- ► Different from "SPIR" (tweaked LLVM IR)

SPIR-V Example

[...]

```
%2 = OpTypeVoid
 %3 = OpTypeFunction %2
                                              : void ()
                                              ; 32-bit float
\%6 = OpTypeFloat 32
\%7 = OpTypeVector \%6 4
                                              : vec4
%8 = OpTypePointer Function %7
                                              : function-local vec4*
%10 = OpConstant \%6 1
%11 = OpConstant \%6 2
%12 = OpConstantComposite %7 %10 %10 %11 %10 ; vec4(1.0, 1.0, 2.0, 1.0)
%13 = OpTypeInt 32 0
                                              ; 32-bit int, sign-less
%14 = OpConstant %13 5
%15 = OpTvpeArray %7 %14
%34 = OpLoad \%7 \%33
%38 = OpAccessChain %37 %20 %35 %21 %36
                                              : s.v[2]
%39 = OpLoad %7 %38
%40 = 0pFAdd \%7 \%34 \%39
      OpStore %31 %40
      OpBranch %29
%41 = OpLabel
                                              ; else
%43 = 0pLoad \%7 \%42
%44 = OpExtInst %7 %1 Sqrt %43
                                              ; extended instruction sqrt
%45 = OpLoad %7 %9
%46 = OpFMul %7 %44 %45
      OpStore %31 %46
```

156

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation Forming Expectations of Performance Timing Experiments and Potential Issues Profiling and Observable Quantities Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation Forming Expectations of Performance

Timing Experiments and Potential Issues Profiling and Observable Quantities Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Qualifying Performance

- What is good performance?
- Is speed-up (e.g. GPU vs CPU? C vs Matlab?) a meaningful way to assess performance?
- ▶ How else could one *form an understanding* of performance?

A Story of Bottlenecks

Imagine:

- A bank with a few service desks
- ► A revolving door at the entrance

What situations can arise at steady-state?

What numbers do we need to characterize performance of this system?

A Story of Bottlenecks (cont'd)

- ▶ *P*_{peak}: [task/sec] Peak throughput of the service desks
- I: [tasks/customer] Intensity
- b: [customers/sec] Throughput of the revolving door

What is the aggregate throughput?

Hager et al. '17