
April 22, 2025
Announcements

Goals

Review

A Graphical Representation: ’Roofline’
Plot (often log-log, but not necessarily):
▶ X-Axis: Intensity
▶ Y-Axis: Performance

What does our inequality correspond to graphically?

P ≤ min(Ppeak, I · b)

IntensityPe
rf
or

m
an

ce

What does the shaded area mean?

Hager et al. ‘17 164

Refining the Model

▶ Pmax: Applicable peak performance of a loop, assuming that data
comes from the fastest data path (this is not necessarily Ppeak)

▶ Computational intensity (“work” per byte transferred) over the slowest
data path utilized

▶ b: Applicable peak bandwidth of the slowest data path utilized
Hager et al. ‘17

166

Practical Tool: llvm-mca

Question: Where to obtain an estimate of Pmax?
Demo: perf/Forming Architectural Performance Expectations
What does llvm-mca do about memory access? / the memory hierarchy?

169

An Example: Exploring Titan V Limits

▶ Memory bandwidth: 652 GB/s theoretical, 540 GB/s achievable
▶ Scratchpad / L1 throughput:

80 (cores) x 32 (simd width) x 4 (word bytes) x 1.2 (base clock) ~=
12.288 TB/s

▶ Theoretical peak flops of 6.9 TFLOPS/s [Wikipedia]
Warburton ‘18

170

Rooflines: Assumptions

What assumptions are built into the roofline model?

Important to remember:
▶ It is what you make of it–the better your calibration, the more info

you get
▶ But: Calibrating on experimental data loses predictive power

(e.g. SPMV)

171

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

173

Timing Experiments: Pitfalls

What are potential issues in timing experiments? (What can you do about
them?)

176

Timing Experiments: Pitfalls (part 2)
What are potential issues in timing experiments? (What can you do about
them?)

177

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

178

Profiling: Basic Approaches

Measurement of “quantities” relating to performance
▶ Exact: Through binary instrumentation (valgrind/Intel Pin/. . .)
▶ Sampling: At some interval, examine the program state

We will focus on profiling by sampling.
Big questions:
▶ What to measure?
▶ At what intervals?

179

Defining Intervals: Performance Counters

A performance counter is a counter that increments every time a given
event occurs.
What events?
▶ Demo: perf/Using Performance Counters
▶ see also Intel SDM, Volume 3

Interaction with performance counters:
▶ Read repeatedly from user code
▶ Interrupt program execution when a threshold is reached
▶ Limited resource!

▶ Only a few available: 4-8 per core
▶ Each can be configured to count one type of event
▶ Idea: Alternate counter programming at some rate

(requires steady-state execution!)

180

Profiling: What to Measure

▶ Raw counts are hard to interpret
▶ Often much more helpful to look at ratios of counts

per core/subroutine/loop/. . .
What ratios should one look at?
Demo: perf/Using Performance Counters

181

Profiling: Useful Ratios
Basic examples:
▶ (Events in Routine 1)/(Events in Routine 2)
▶ (Events in Line 1)/(Events in Line 2)
▶ (Count of Event 1 in X)/(Count of Event 2 in X)

Architectural examples:

Issue with ’instructions’ as a metric?

182

“Top-Down” Performance Analysis

Idea: Account for useful work per available issue slot
What is an issue slot?

[Yasin ‘14]

183

Issue Slots: Recap

[David Kanter / Realworldtech.com]
184

What can happen to an issue slot: at a high level?

[Yasin ‘14]

185

What can happen to an issue slot: in detail?

[Yasin ‘14]
186

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

187

Demo: Performance Counters

Show the rest of:
Demo: perf/Using Performance Counters

188

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
Expression Trees
Parallel Patterns and Array Languages

Polyhedral Representation and Transformation

196

Reduction

y = f (· · · f (f (x1, x2), x3), . . . , xN)

where N is the input size.
Also known as
▶ Lisp/Python function reduce (Scheme: fold)
▶ C++ STL std::accumulate

197

Reduction: Graph

y

x1 x2

x3

x4

x5

x6

198

Approach to Reduction

f (x
, y
)?

Can we do better?

“Tree” very imbalanced. What property of f
would allow ‘rebalancing’?

f (f (x , y), z) = f (x , f (y , z))

Looks less improbable if we let
x ◦ y = f (x , y):

x ◦ (y ◦ z)) = (x ◦ y) ◦ z

Has a very familiar name: Associativity

199

Reduction: A Better Graph

y

x0 x1 x2 x3 x4 x5 x6 x7

Processor allocation?

200

Mapping Reduction to SIMD/GPU
▶ Obvious: Want to use tree-based approach.
▶ Problem: Two scales, Work group and Grid

▶ to occupy both to make good use of the machine.

▶ In particular, need synchronization after each tree stage.
▶ Solution: Use a two-scale algorithm.

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

In particular: Use multiple grid invocations to achieve inter-workgroup
synchronization.

201

Map-Reduce

Sounds like this:

y = f (· · · f (f (g(x1), g(x2)),
g(x3)), . . . , g(xN))

where N is the input size.
▶ Lisp naming, again
▶ Mild generalization of reduction

But no. Not even close.

202

Map-Reduce: Graph

y1

x0

g

x1

g

x2

g

x3

g

y2

x4

g

x5

g

x6

g

x7

g

203

Scan

y1 = x1
y2 = f (y1, x2)
... = ...

yN = f (yN−1, xN)
where N is the input size. (Think: N large, f (x , y) = x + y)
▶ Prefix Sum/Cumulative Sum
▶ Abstract view of: loop-carried dependence
▶ Also possible: Segmented Scan

204

Scan: Graph
x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

Id

y2

Id

y3

Id

y4

Id y5

Id

Id

Again: Need assumptions on f .
Associativity, commutativity.

205

Scan: Implementation

Work-efficient?

206

Scan: Implementation II

Two sweeps: Upward, downward, both tree-shape

On upward sweep:
▶ Get values L and R from left and right child
▶ Save L in local variable Mine
▶ Compute Tmp = L + R and pass to parent

On downward sweep:
▶ Get value Tmp from parent
▶ Send Tmp to left child
▶ Sent Tmp+Mine to right child

207

Scan: Examples

Name examples of Prefix Sums/Scans:

208

Data-parallel language: Goals
Goal: Design a full data-parallel programming language
Example: What should the (asymptotic) execution time for Quicksort be?

Question: What parallel primitive could be used to realize this?

Blelloch ‘95
209

NESL Example: String Search
teststr = "string strap asop string" : [char]
>>> candidates = [0:#teststr-5];
candidates = [0, 1, 2, 3, : [int]
>>> {a == ‘s: a in teststr -> candidates};
it = [T, F, F, F, F, F, F, T, F, F....] : [bool]
>>> candidates = {c in candidates;
... a in teststr -> candidates | a == ‘s};
candidates = [0, 7, 13, 20, 24] : [int]
>>> candidates = {c in candidates;
... a in teststr -> {candidates+1:candidates}
... | a == ‘t};

▶ Work and depth of this example?
▶ NESL specifies work and depth for its constructs
▶ How can scans be used to realize this?

Blelloch ‘95
210

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation
Polyhedral Model: What?

212

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation
Polyhedral Model: What?

213

Basic Object: Presburger Set

Think of the problem statement here as representing an arbitrary-size (e.g.:
dependency) graph.
Presburger sets correspond to a subset of predicate logic acting on tuples
of integers.
Important: Think of this as a mathematical tool that can be used in many
settings.

214

Basic Object: Presburger Set

Terms:
▶ Variables, Integer Constants
▶ +, −
▶ ⌊·/d⌋

Predicates:
▶ (Term) ≤ (Term)
▶ (Pred) ∧ (Pred), (Pred) ∨ (Pred), ¬(Pred)
▶ ∃v : (Pred)(v)

Sets: integer tuples for which a predicate is true
Verdoolaege ‘13

215

Presburger Sets: Reasoning

What’s “missing”? Why?

Why is this called ’quasi-affine’?

216

Presburger Sets: Reasoning

What do the resulting sets have to do with polyhedra? When are they
convex?

Why polyhedra? Why not just rectangles?

217

Demo: Constructing and Operating on Presburger Sets

Demo: lang/Operating on Presburger Sets

218

Making Use of Presburger Sets

▶ Loop Domains
▶ Array Access Relations (e.g. write, read: per statement)
▶ Schedules, with “lexicographic time”
▶ Dependency graphs
▶ (E.g. cache) interference graphs

Q: Specify domain and range for the relations above.

219

Example: Dependency Graph

Given:
▶ Write access relation W : Loop domain → array indices
▶ Read access relation R

▶ Schedule S for statement Si : Loop domain D → lex. time of
statement instance

▶ Relation ≺: Lexicographic ’before’
Find the dependency graph:

Verdoolaege ‘13

220

